Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,66 +1,66 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
-
import tensorflow as tf
|
| 5 |
-
import pickle
|
| 6 |
-
from PIL import Image
|
| 7 |
-
|
| 8 |
-
with open('
|
| 9 |
-
tokenizer = pickle.load(handle)
|
| 10 |
-
feature_model=tf.keras.models.load_model('feature_model.keras')
|
| 11 |
-
model = tf.keras.models.load_model('best_model_inceptionv3.keras')
|
| 12 |
-
def idx_to_word(integer, tokenizer):
|
| 13 |
-
for word, index in tokenizer.word_index.items():
|
| 14 |
-
if index == integer:
|
| 15 |
-
return word
|
| 16 |
-
return None
|
| 17 |
-
|
| 18 |
-
def predict_caption(image):
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
in_text = 'startseq'
|
| 22 |
-
# iterate over the max length of sequence
|
| 23 |
-
for i in range(35):
|
| 24 |
-
# encode input sequence
|
| 25 |
-
sequence = tokenizer.texts_to_sequences([in_text])[0]
|
| 26 |
-
# pad the sequence
|
| 27 |
-
sequence = tf.keras.preprocessing.sequence.pad_sequences([sequence], 35, padding='post')
|
| 28 |
-
# predict next word
|
| 29 |
-
yhat = model.predict([image, sequence], verbose=0)
|
| 30 |
-
# get index with high probability
|
| 31 |
-
yhat = np.argmax(yhat)
|
| 32 |
-
# convert index to word
|
| 33 |
-
word = idx_to_word(yhat, tokenizer)
|
| 34 |
-
# stop if word not found
|
| 35 |
-
if word is None:
|
| 36 |
-
break
|
| 37 |
-
# append word as input for generating next word
|
| 38 |
-
in_text += " " + word
|
| 39 |
-
# stop if we reach end tag
|
| 40 |
-
if word == 'endseq':
|
| 41 |
-
break
|
| 42 |
-
# Split the generated sequence to exclude the first and last words
|
| 43 |
-
final_caption = in_text.split()[1:-1]
|
| 44 |
-
# Join the words to form the final caption
|
| 45 |
-
final_caption = ' '.join(final_caption)
|
| 46 |
-
|
| 47 |
-
return final_caption
|
| 48 |
-
|
| 49 |
-
def generate_caption(image):
|
| 50 |
-
print(image)
|
| 51 |
-
|
| 52 |
-
image = image.resize((299, 299))
|
| 53 |
-
image_array = tf.keras.preprocessing.image.img_to_array(image)
|
| 54 |
-
image_array = image_array.reshape((1, 299, 299, 3))
|
| 55 |
-
image = tf.keras.applications.inception_v3.preprocess_input(image_array)
|
| 56 |
-
feature = feature_model.predict(image, verbose=0)
|
| 57 |
-
caption = predict_caption(feature)
|
| 58 |
-
return caption
|
| 59 |
-
|
| 60 |
-
gr.Interface(fn=generate_caption,
|
| 61 |
-
inputs=gr.Image(label='Upload a photo',type="pil"),
|
| 62 |
-
outputs=gr.Label(label='Caption'),
|
| 63 |
-
examples=['1028205764_7e8df9a2ea.jpg','123.jpg','1001773457.jpg','1024138940_f1fefbdce1.jpg'],
|
| 64 |
-
title='Image Caption Generator',
|
| 65 |
-
).launch(share=True)
|
| 66 |
-
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import tensorflow as tf
|
| 5 |
+
import pickle
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
with open('tokenizer.pkl', 'rb') as handle:
|
| 9 |
+
tokenizer = pickle.load(handle)
|
| 10 |
+
feature_model=tf.keras.models.load_model('feature_model.keras')
|
| 11 |
+
model = tf.keras.models.load_model('best_model_inceptionv3.keras')
|
| 12 |
+
def idx_to_word(integer, tokenizer):
|
| 13 |
+
for word, index in tokenizer.word_index.items():
|
| 14 |
+
if index == integer:
|
| 15 |
+
return word
|
| 16 |
+
return None
|
| 17 |
+
|
| 18 |
+
def predict_caption(image):
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
in_text = 'startseq'
|
| 22 |
+
# iterate over the max length of sequence
|
| 23 |
+
for i in range(35):
|
| 24 |
+
# encode input sequence
|
| 25 |
+
sequence = tokenizer.texts_to_sequences([in_text])[0]
|
| 26 |
+
# pad the sequence
|
| 27 |
+
sequence = tf.keras.preprocessing.sequence.pad_sequences([sequence], 35, padding='post')
|
| 28 |
+
# predict next word
|
| 29 |
+
yhat = model.predict([image, sequence], verbose=0)
|
| 30 |
+
# get index with high probability
|
| 31 |
+
yhat = np.argmax(yhat)
|
| 32 |
+
# convert index to word
|
| 33 |
+
word = idx_to_word(yhat, tokenizer)
|
| 34 |
+
# stop if word not found
|
| 35 |
+
if word is None:
|
| 36 |
+
break
|
| 37 |
+
# append word as input for generating next word
|
| 38 |
+
in_text += " " + word
|
| 39 |
+
# stop if we reach end tag
|
| 40 |
+
if word == 'endseq':
|
| 41 |
+
break
|
| 42 |
+
# Split the generated sequence to exclude the first and last words
|
| 43 |
+
final_caption = in_text.split()[1:-1]
|
| 44 |
+
# Join the words to form the final caption
|
| 45 |
+
final_caption = ' '.join(final_caption)
|
| 46 |
+
|
| 47 |
+
return final_caption
|
| 48 |
+
|
| 49 |
+
def generate_caption(image):
|
| 50 |
+
print(image)
|
| 51 |
+
|
| 52 |
+
image = image.resize((299, 299))
|
| 53 |
+
image_array = tf.keras.preprocessing.image.img_to_array(image)
|
| 54 |
+
image_array = image_array.reshape((1, 299, 299, 3))
|
| 55 |
+
image = tf.keras.applications.inception_v3.preprocess_input(image_array)
|
| 56 |
+
feature = feature_model.predict(image, verbose=0)
|
| 57 |
+
caption = predict_caption(feature)
|
| 58 |
+
return caption
|
| 59 |
+
|
| 60 |
+
gr.Interface(fn=generate_caption,
|
| 61 |
+
inputs=gr.Image(label='Upload a photo',type="pil"),
|
| 62 |
+
outputs=gr.Label(label='Caption'),
|
| 63 |
+
examples=['1028205764_7e8df9a2ea.jpg','123.jpg','1001773457.jpg','1024138940_f1fefbdce1.jpg'],
|
| 64 |
+
title='Image Caption Generator',
|
| 65 |
+
).launch(share=True)
|
| 66 |
+
|