File size: 3,992 Bytes
e8f13e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import chromadb
import platform
import polars as pl
import polars as pl
from chromadb.utils import embedding_functions
from typing import List, Tuple, Optional
from huggingface_hub import InferenceClient
from tqdm.contrib.concurrent import thread_map
from huggingface_hub import login
from dotenv import load_dotenv
import os
from datetime import datetime, timedelta
import stamina
import requests
import polars as pl
from typing import Literal

load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")


def get_save_path() -> Literal["chroma/"] | Literal["/data/chroma/"]:
    return "chroma/" if platform.system() == "Darwin" else "/data/chroma/"


save_path = get_save_path()


chroma_client = chromadb.PersistentClient(
    path=save_path,
)
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
    model_name="Snowflake/snowflake-arctic-embed-m-long", trust_remote_code=True
)
collection = chroma_client.create_collection(
    name="dataset_cards", get_or_create=True, embedding_function=sentence_transformer_ef
)


def get_last_modified_in_collection() -> datetime | None:
    all_items = collection.get(
        include=[
            "metadatas",
        ]
    )
    if last_modified := [
        datetime.fromisoformat(item["last_modified"]) for item in all_items["metadatas"]
    ]:
        return max(last_modified)
    else:
        return None


def parse_markdown_column(
    df: pl.DataFrame, markdown_column: str, dataset_id_column: str
) -> pl.DataFrame:
    return df.with_columns(
        parsed_markdown=(
            pl.col(markdown_column)
            .str.extract(r"(?s)^---.*?---\s*(.*)", group_index=1)
            .fill_null(pl.col(markdown_column))
            .str.strip_chars()
        ),
        prepended_markdown=(
            pl.concat_str(
                [
                    pl.lit("Dataset ID "),
                    pl.col(dataset_id_column).cast(pl.Utf8),
                    pl.lit("\n\n"),
                    pl.col(markdown_column)
                    .str.extract(r"(?s)^---.*?---\s*(.*)", group_index=1)
                    .fill_null(pl.col(markdown_column))
                    .str.strip_chars(),
                ]
            )
        ),
    )


def load_cards(
    min_len: int = 50,
    min_likes: int | None = None,
    last_modified: Optional[datetime] = None,
) -> (
    None
    | Tuple[
        List[str],
        List[str],
        List[datetime],
    ]
):
    df = pl.read_parquet(
        "hf://datasets/librarian-bots/dataset_cards_with_metadata_with_embeddings/data/train-00000-of-00001.parquet"
    )
    df = parse_markdown_column(df, "card", "datasetId")
    df = df.with_columns(pl.col("parsed_markdown").str.len_chars().alias("card_len"))
    print(df)
    df = df.filter(pl.col("card_len") > min_len)
    print(df)
    if min_likes:
        df = df.filter(pl.col("likes") > min_likes)
    if last_modified:
        df = df.filter(pl.col("last_modified") > last_modified)
    if len(df) == 0:
        return None

    cards = df.get_column("prepended_markdown").to_list()
    model_ids = df.get_column("datasetId").to_list()
    last_modifieds = df.get_column("last_modified").to_list()
    return cards, model_ids, last_modifieds


client = InferenceClient(
    model="https://pqzap00ebpl1ydt4.us-east-1.aws.endpoints.huggingface.cloud",
    token=HF_TOKEN,
)


@stamina.retry(on=requests.HTTPError, attempts=3, wait_initial=10)
def embed_card(text):
    text = text[:8192]
    return client.feature_extraction(text)


most_recent = get_last_modified_in_collection()

if data := load_cards(min_len=200, min_likes=None, last_modified=most_recent):
    cards, model_ids, last_modifieds = data
    print("mapping...")
    results = thread_map(embed_card, cards)
    collection.upsert(
        ids=model_ids,
        embeddings=[embedding.tolist()[0] for embedding in results],
        metadatas=[{"last_modified": str(lm)} for lm in last_modifieds],
    )
    print("done")
else:
    print("no new data")