# python3.7 """Contains the function to build optimizer for runner.""" import math import torch __all__ = ['build_optimizer', 'build_optimizers'] _ALLOWED_OPT_TYPES = ['SGD', 'ADAM'] def build_optimizer(config, model): """Builds an optimizer for the given model. Basically, the configuration is expected to contain following settings: (1) opt_type: The type of the optimizer. (required) (2) base_lr: The base learning rate for all parameters. (required) (3) base_wd: The base weight decay for all parameters. (default: 0.0) (4) bias_lr_multiplier: The learning rate multiplier for bias parameters. (default: 1.0) (5) bias_wd_multiplier: The weight decay multiplier for bias parameters. (default: 1.0) (6) **kwargs: Additional settings for the optimizer, such as `momentum`. Args: config: The configuration used to build the optimizer. model: The model which the optimizer serves. Returns: A `torch.optim.Optimizer`. Raises: ValueError: The `opt_type` is not supported. NotImplementedError: If `opt_type` is not implemented. """ assert isinstance(config, dict) opt_type = config['opt_type'].upper() base_lr = config['base_lr'] base_wd = config.get('base_wd', 0.0) bias_lr_multiplier = config.get('bias_lr_multiplier', 1.0) bias_wd_multiplier = config.get('bias_wd_multiplier', 1.0) if opt_type not in _ALLOWED_OPT_TYPES: raise ValueError(f'Invalid optimizer type `{opt_type}`!' f'Allowed types: {_ALLOWED_OPT_TYPES}.') model_params = [] for param_name, param in model.named_parameters(): param_group = {'params': [param]} if param.requires_grad: if 'bias' in param_name: param_group['lr'] = base_lr * bias_lr_multiplier param_group['weight_decay'] = base_wd * bias_wd_multiplier else: param_group['lr'] = base_lr param_group['weight_decay'] = base_wd model_params.append(param_group) if opt_type == 'SGD': return torch.optim.SGD(params=model_params, lr=base_lr, momentum=config.get('momentum', 0.9), dampening=config.get('dampening', 0), weight_decay=base_wd, nesterov=config.get('nesterov', False)) if opt_type == 'ADAM': return AdamOptimizer(params=model_params, lr=base_lr, betas=config.get('betas', (0.9, 0.999)), eps=config.get('eps', 1e-8), weight_decay=base_wd, amsgrad=config.get('amsgrad', False)) raise NotImplementedError(f'Not implemented optimizer type `{opt_type}`!') def build_optimizers(opt_config, runner): """Builds optimizers for the given runner. The `opt_config` should be a dictionary, where keys are model names and each value is the optimizer configuration for a particumar model. All built optimizers will be saved in `runner.optimizers`, which is also a dictionary. NOTE: The model names should match the keys of `runner.models`. Args: opt_config: The configuration to build the optimizers. runner: The runner to build the optimizer for. """ if not opt_config: return assert isinstance(opt_config, dict) for name, config in opt_config.items(): if not name or not config: continue if name in runner.optimizers: raise AttributeError(f'Optimizer `{name}` has already existed!') if name not in runner.models: raise AttributeError(f'Model `{name}` is missing!') runner.optimizers[name] = build_optimizer(config, runner.models[name]) # We slightly modify the Adam optimizer from `torch.optim`. since there exists # some discrepancies between the `torch.optim` version and the TensorFlow # version. The main difference is where to add the `epsilon`. # TODO: The modified optimizer does not support `amsgrad` any more. # pylint: disable=line-too-long # pylint: disable=unneeded-not # pylint: disable=misplaced-comparison-constant # pylint: disable=super-with-arguments class AdamOptimizer(torch.optim.Optimizer): r"""Implements Adam algorithm. It has been proposed in `Adam: A Method for Stochastic Optimization`_. The implementation of the L2 penalty follows changes proposed in `Decoupled Weight Decay Regularization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= weight_decay: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) super(AdamOptimizer, self).__init__(params, defaults) def __setstate__(self, state): super(AdamOptimizer, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') amsgrad = group['amsgrad'] assert not amsgrad state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] # if amsgrad: # max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] if group['weight_decay'] != 0: grad = grad.add(p, alpha=group['weight_decay']) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) # if amsgrad: # # Maintains the maximum of all 2nd moment running avg. till now # torch.maximum(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # # Use the max. for normalizing running avg. of gradient # denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) # else: # denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) # step_size = group['lr'] / bias_correction1 # p.addcdiv_(exp_avg, denom, value=-step_size) step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 p.addcdiv_(exp_avg, exp_avg_sq.sqrt().add_(group['eps']) , value=-step_size) return loss # pylint: enable=line-too-long # pylint: enable=unneeded-not # pylint: enable=misplaced-comparison-constant # pylint: enable=super-with-arguments