# python3.7 """Contains the distributed data sampler. This file is mostly borrowed from `torch/utils/data/distributed.py`. However, sometimes, initialize the data loader and data sampler can be time consuming (since it will load a large amount of data at one time). To avoid re-initializing the data loader again and again, we modified the sampler to support loading the data for only one time and then repeating the data loader. Please use the class member `repeat` to control how many times you want the data load to repeat. After `repeat` times, the data will be re-loaded. NOTE: The number of repeat times should not be very large, especially when there are too many samples in the dataset. We recommend to set `repeat = 500` for datasets with ~50K samples. """ # pylint: disable=line-too-long import math from typing import TypeVar, Optional, Iterator import torch from torch.utils.data import Sampler, Dataset import torch.distributed as dist T_co = TypeVar('T_co', covariant=True) class DistributedSampler(Sampler): r"""Sampler that restricts data loading to a subset of the dataset. It is especially useful in conjunction with :class:`torch.nn.parallel.DistributedDataParallel`. In such a case, each process can pass a :class:`~torch.utils.data.DistributedSampler` instance as a :class:`~torch.utils.data.DataLoader` sampler, and load a subset of the original dataset that is exclusive to it. .. note:: Dataset is assumed to be of constant size. Arguments: dataset: Dataset used for sampling. num_replicas (int, optional): Number of processes participating in distributed training. By default, :attr:`rank` is retrieved from the current distributed group. rank (int, optional): Rank of the current process within :attr:`num_replicas`. By default, :attr:`rank` is retrieved from the current distributed group. shuffle (bool, optional): If ``True`` (default), sampler will shuffle the indices. seed (int, optional): random seed used to shuffle the sampler if :attr:`shuffle=True`. This number should be identical across all processes in the distributed group. Default: ``0``. drop_last (bool, optional): if ``True``, then the sampler will drop the tail of the data to make it evenly divisible across the number of replicas. If ``False``, the sampler will add extra indices to make the data evenly divisible across the replicas. Default: ``False``. current_iter (int, optional): Number of current iteration. Default: ``0``. repeat (int, optional): Repeating number of the whole dataloader. Default: ``1000``. .. warning:: In distributed mode, calling the :meth:`set_epoch` method at the beginning of each epoch **before** creating the :class:`DataLoader` iterator is necessary to make shuffling work properly across multiple epochs. Otherwise, the same ordering will be always used. """ def __init__(self, dataset: Dataset, num_replicas: Optional[int] = None, rank: Optional[int] = None, shuffle: bool = True, seed: int = 0, drop_last: bool = False, current_iter: int = 0, repeat: int = 1000) -> None: super().__init__(None) if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.iter = current_iter self.drop_last = drop_last # NOTE: self.dataset_length is `repeat X len(self.dataset)` self.repeat = repeat self.dataset_length = len(self.dataset) * self.repeat if self.drop_last and self.dataset_length % self.num_replicas != 0: # Split to nearest available length that is evenly divisible. # This is to ensure each rank receives the same amount of data when # using this Sampler. self.num_samples = math.ceil( (self.dataset_length - self.num_replicas) / self.num_replicas ) else: self.num_samples = math.ceil(self.dataset_length / self.num_replicas) self.total_size = self.num_samples * self.num_replicas self.shuffle = shuffle self.seed = seed self.__generate_indices__() def __generate_indices__(self) -> None: g = torch.Generator() indices_bank = [] for iter_ in range(self.iter, self.iter + self.repeat): g.manual_seed(self.seed + iter_) indices = torch.randperm(len(self.dataset), generator=g).tolist() indices_bank.extend(indices) self.indices = indices_bank def __iter__(self) -> Iterator[T_co]: if self.shuffle: # deterministically shuffle based on iter and seed indices = self.indices else: indices = list(range(self.dataset_length)) if not self.drop_last: # add extra samples to make it evenly divisible indices += indices[:(self.total_size - len(indices))] else: # remove tail of data to make it evenly divisible. indices = indices[:self.total_size] # subsample indices = indices[self.rank:self.total_size:self.num_replicas] return iter(indices) def __len__(self) -> int: return self.num_samples def __reset__(self, iteration: int) -> None: self.iter = iteration self.__generate_indices__() # pylint: enable=line-too-long