# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Train a GAN using the techniques described in the paper "Training Generative Adversarial Networks with Limited Data".""" import os import argparse import json import re import tensorflow as tf import dnnlib import dnnlib.tflib as tflib from training import training_loop from training import dataset from metrics import metric_defaults #---------------------------------------------------------------------------- class UserError(Exception): pass #---------------------------------------------------------------------------- def setup_training_options( # General options (not included in desc). gpus = None, # Number of GPUs: , default = 1 gpu snap = None, # Snapshot interval: , default = 50 ticks # Training dataset. data = None, # Training dataset (required): res = None, # Override dataset resolution: , default = highest available mirror = None, # Augment dataset with x-flips: , default = False # Metrics (not included in desc). metrics = None, # List of metric names: [], ['fid50k_full'] (default), ... metricdata = None, # Metric dataset (optional): # Base config. cfg = None, # Base config: 'auto' (default), 'stylegan2', 'paper256', 'paper512', 'paper1024', 'cifar', 'cifarbaseline' gamma = None, # Override R1 gamma: , default = depends on cfg kimg = None, # Override training duration: , default = depends on cfg # Discriminator augmentation. aug = None, # Augmentation mode: 'ada' (default), 'noaug', 'fixed', 'adarv' p = None, # Specify p for 'fixed' (required): target = None, # Override ADA target for 'ada' and 'adarv': , default = depends on aug augpipe = None, # Augmentation pipeline: 'blit', 'geom', 'color', 'filter', 'noise', 'cutout', 'bg', 'bgc' (default), ..., 'bgcfnc' # Comparison methods. cmethod = None, # Comparison method: 'nocmethod' (default), 'bcr', 'zcr', 'pagan', 'wgangp', 'auxrot', 'spectralnorm', 'shallowmap', 'adropout' dcap = None, # Multiplier for discriminator capacity: , default = 1 # Transfer learning. resume = None, # Load previous network: 'noresume' (default), 'ffhq256', 'ffhq512', 'ffhq1024', 'celebahq256', 'lsundog256', , freezed = None, # Freeze-D: , default = 0 discriminator layers ): # Initialize dicts. args = dnnlib.EasyDict() args.G_args = dnnlib.EasyDict(func_name='training.networks.G_main') args.D_args = dnnlib.EasyDict(func_name='training.networks.D_main') args.G_opt_args = dnnlib.EasyDict(beta1=0.0, beta2=0.99) args.D_opt_args = dnnlib.EasyDict(beta1=0.0, beta2=0.99) args.loss_args = dnnlib.EasyDict(func_name='training.loss.stylegan2') args.augment_args = dnnlib.EasyDict(class_name='training.augment.AdaptiveAugment') # --------------------------- # General options: gpus, snap # --------------------------- if gpus is None: gpus = 1 assert isinstance(gpus, int) if not (gpus >= 1 and gpus & (gpus - 1) == 0): raise UserError('--gpus must be a power of two') args.num_gpus = gpus if snap is None: snap = 50 assert isinstance(snap, int) if snap < 1: raise UserError('--snap must be at least 1') args.image_snapshot_ticks = snap args.network_snapshot_ticks = snap # ----------------------------------- # Training dataset: data, res, mirror # ----------------------------------- assert data is not None assert isinstance(data, str) data_name = os.path.basename(os.path.abspath(data)) if not os.path.isdir(data) or len(data_name) == 0: raise UserError('--data must point to a directory containing *.tfrecords') desc = data_name with tf.Graph().as_default(), tflib.create_session().as_default(): # pylint: disable=not-context-manager args.train_dataset_args = dnnlib.EasyDict(path=data, max_label_size='full') dataset_obj = dataset.load_dataset(**args.train_dataset_args) # try to load the data and see what comes out args.train_dataset_args.resolution = dataset_obj.shape[-1] # be explicit about resolution args.train_dataset_args.max_label_size = dataset_obj.label_size # be explicit about label size validation_set_available = dataset_obj.has_validation_set dataset_obj.close() dataset_obj = None if res is None: res = args.train_dataset_args.resolution else: assert isinstance(res, int) if not (res >= 4 and res & (res - 1) == 0): raise UserError('--res must be a power of two and at least 4') if res > args.train_dataset_args.resolution: raise UserError(f'--res cannot exceed maximum available resolution in the dataset ({args.train_dataset_args.resolution})') desc += f'-res{res:d}' args.train_dataset_args.resolution = res if mirror is None: mirror = False else: assert isinstance(mirror, bool) if mirror: desc += '-mirror' args.train_dataset_args.mirror_augment = mirror # ---------------------------- # Metrics: metrics, metricdata # ---------------------------- if metrics is None: metrics = ['fid50k_full'] assert isinstance(metrics, list) assert all(isinstance(metric, str) for metric in metrics) args.metric_arg_list = [] for metric in metrics: if metric not in metric_defaults.metric_defaults: raise UserError('\n'.join(['--metrics can only contain the following values:', 'none'] + list(metric_defaults.metric_defaults.keys()))) args.metric_arg_list.append(metric_defaults.metric_defaults[metric]) args.metric_dataset_args = dnnlib.EasyDict(args.train_dataset_args) if metricdata is not None: assert isinstance(metricdata, str) if not os.path.isdir(metricdata): raise UserError('--metricdata must point to a directory containing *.tfrecords') args.metric_dataset_args.path = metricdata # ----------------------------- # Base config: cfg, gamma, kimg # ----------------------------- if cfg is None: cfg = 'auto' assert isinstance(cfg, str) desc += f'-{cfg}' cfg_specs = { 'auto': dict(ref_gpus=-1, kimg=25000, mb=-1, mbstd=-1, fmaps=-1, lrate=-1, gamma=-1, ema=-1, ramp=0.05, map=2), # populated dynamically based on 'gpus' and 'res' 'stylegan2': dict(ref_gpus=8, kimg=25000, mb=32, mbstd=4, fmaps=1, lrate=0.002, gamma=10, ema=10, ramp=None, map=8), # uses mixed-precision, unlike original StyleGAN2 'paper256': dict(ref_gpus=8, kimg=25000, mb=64, mbstd=8, fmaps=0.5, lrate=0.0025, gamma=1, ema=20, ramp=None, map=8), 'paper512': dict(ref_gpus=8, kimg=25000, mb=64, mbstd=8, fmaps=1, lrate=0.0025, gamma=0.5, ema=20, ramp=None, map=8), 'paper1024': dict(ref_gpus=8, kimg=25000, mb=32, mbstd=4, fmaps=1, lrate=0.002, gamma=2, ema=10, ramp=None, map=8), 'cifar': dict(ref_gpus=2, kimg=100000, mb=64, mbstd=32, fmaps=0.5, lrate=0.0025, gamma=0.01, ema=500, ramp=0.05, map=2), 'cifarbaseline': dict(ref_gpus=2, kimg=100000, mb=64, mbstd=32, fmaps=0.5, lrate=0.0025, gamma=0.01, ema=500, ramp=0.05, map=8), } assert cfg in cfg_specs spec = dnnlib.EasyDict(cfg_specs[cfg]) if cfg == 'auto': desc += f'{gpus:d}' spec.ref_gpus = gpus spec.mb = max(min(gpus * min(4096 // res, 32), 64), gpus) # keep gpu memory consumption at bay spec.mbstd = min(spec.mb // gpus, 4) # other hyperparams behave more predictably if mbstd group size remains fixed spec.fmaps = 1 if res >= 512 else 0.5 spec.lrate = 0.002 if res >= 1024 else 0.0025 spec.gamma = 0.0002 * (res ** 2) / spec.mb # heuristic formula spec.ema = spec.mb * 10 / 32 args.total_kimg = spec.kimg args.minibatch_size = spec.mb args.minibatch_gpu = spec.mb // spec.ref_gpus args.D_args.mbstd_group_size = spec.mbstd args.G_args.fmap_base = args.D_args.fmap_base = int(spec.fmaps * 16384) args.G_args.fmap_max = args.D_args.fmap_max = 512 args.G_opt_args.learning_rate = args.D_opt_args.learning_rate = spec.lrate args.loss_args.r1_gamma = spec.gamma args.G_smoothing_kimg = spec.ema args.G_smoothing_rampup = spec.ramp args.G_args.mapping_layers = spec.map args.G_args.num_fp16_res = args.D_args.num_fp16_res = 4 # enable mixed-precision training args.G_args.conv_clamp = args.D_args.conv_clamp = 256 # clamp activations to avoid float16 overflow if cfg == 'cifar': args.loss_args.pl_weight = 0 # disable path length regularization args.G_args.style_mixing_prob = None # disable style mixing args.D_args.architecture = 'orig' # disable residual skip connections if gamma is not None: assert isinstance(gamma, float) if not gamma >= 0: raise UserError('--gamma must be non-negative') desc += f'-gamma{gamma:g}' args.loss_args.r1_gamma = gamma if kimg is not None: assert isinstance(kimg, int) if not kimg >= 1: raise UserError('--kimg must be at least 1') desc += f'-kimg{kimg:d}' args.total_kimg = kimg # --------------------------------------------------- # Discriminator augmentation: aug, p, target, augpipe # --------------------------------------------------- if aug is None: aug = 'ada' else: assert isinstance(aug, str) desc += f'-{aug}' if aug == 'ada': args.augment_args.tune_heuristic = 'rt' args.augment_args.tune_target = 0.6 elif aug == 'noaug': pass elif aug == 'fixed': if p is None: raise UserError(f'--aug={aug} requires specifying --p') elif aug == 'adarv': if not validation_set_available: raise UserError(f'--aug={aug} requires separate validation set; please see "python dataset_tool.py pack -h"') args.augment_args.tune_heuristic = 'rv' args.augment_args.tune_target = 0.5 else: raise UserError(f'--aug={aug} not supported') if p is not None: assert isinstance(p, float) if aug != 'fixed': raise UserError('--p can only be specified with --aug=fixed') if not 0 <= p <= 1: raise UserError('--p must be between 0 and 1') desc += f'-p{p:g}' args.augment_args.initial_strength = p if target is not None: assert isinstance(target, float) if aug not in ['ada', 'adarv']: raise UserError('--target can only be specified with --aug=ada or --aug=adarv') if not 0 <= target <= 1: raise UserError('--target must be between 0 and 1') desc += f'-target{target:g}' args.augment_args.tune_target = target assert augpipe is None or isinstance(augpipe, str) if augpipe is None: augpipe = 'bgc' else: if aug == 'noaug': raise UserError('--augpipe cannot be specified with --aug=noaug') desc += f'-{augpipe}' augpipe_specs = { 'blit': dict(xflip=1, rotate90=1, xint=1), 'geom': dict(scale=1, rotate=1, aniso=1, xfrac=1), 'color': dict(brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1), 'filter': dict(imgfilter=1), 'noise': dict(noise=1), 'cutout': dict(cutout=1), 'bg': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1), 'bgc': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1), 'bgcf': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1), 'bgcfn': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1, noise=1), 'bgcfnc': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1, noise=1, cutout=1), } assert augpipe in augpipe_specs if aug != 'noaug': args.augment_args.apply_func = 'training.augment.augment_pipeline' args.augment_args.apply_args = augpipe_specs[augpipe] # --------------------------------- # Comparison methods: cmethod, dcap # --------------------------------- assert cmethod is None or isinstance(cmethod, str) if cmethod is None: cmethod = 'nocmethod' else: desc += f'-{cmethod}' if cmethod == 'nocmethod': pass elif cmethod == 'bcr': args.loss_args.func_name = 'training.loss.cmethods' args.loss_args.bcr_real_weight = 10 args.loss_args.bcr_fake_weight = 10 args.loss_args.bcr_augment = dnnlib.EasyDict(func_name='training.augment.augment_pipeline', xint=1, xint_max=1/32) elif cmethod == 'zcr': args.loss_args.func_name = 'training.loss.cmethods' args.loss_args.zcr_gen_weight = 0.02 args.loss_args.zcr_dis_weight = 0.2 args.G_args.num_fp16_res = args.D_args.num_fp16_res = 0 # disable mixed-precision training args.G_args.conv_clamp = args.D_args.conv_clamp = None elif cmethod == 'pagan': if aug != 'noaug': raise UserError(f'--cmethod={cmethod} is not compatible with discriminator augmentation; please specify --aug=noaug') args.D_args.use_pagan = True args.augment_args.tune_heuristic = 'rt' # enable ada heuristic args.augment_args.pop('apply_func', None) # disable discriminator augmentation args.augment_args.pop('apply_args', None) args.augment_args.tune_target = 0.95 elif cmethod == 'wgangp': if aug != 'noaug': raise UserError(f'--cmethod={cmethod} is not compatible with discriminator augmentation; please specify --aug=noaug') if gamma is not None: raise UserError(f'--cmethod={cmethod} is not compatible with --gamma') args.loss_args = dnnlib.EasyDict(func_name='training.loss.wgangp') args.G_opt_args.learning_rate = args.D_opt_args.learning_rate = 0.001 args.G_args.num_fp16_res = args.D_args.num_fp16_res = 0 # disable mixed-precision training args.G_args.conv_clamp = args.D_args.conv_clamp = None args.lazy_regularization = False elif cmethod == 'auxrot': if args.train_dataset_args.max_label_size > 0: raise UserError(f'--cmethod={cmethod} is not compatible with label conditioning; please specify a dataset without labels') args.loss_args.func_name = 'training.loss.cmethods' args.loss_args.auxrot_alpha = 10 args.loss_args.auxrot_beta = 5 args.D_args.score_max = 5 # prepare D to output 5 scalars per image instead of just 1 elif cmethod == 'spectralnorm': args.D_args.use_spectral_norm = True elif cmethod == 'shallowmap': if args.G_args.mapping_layers == 2: raise UserError(f'--cmethod={cmethod} is a no-op for --cfg={cfg}') args.G_args.mapping_layers = 2 elif cmethod == 'adropout': if aug != 'noaug': raise UserError(f'--cmethod={cmethod} is not compatible with discriminator augmentation; please specify --aug=noaug') args.D_args.adaptive_dropout = 1 args.augment_args.tune_heuristic = 'rt' # enable ada heuristic args.augment_args.pop('apply_func', None) # disable discriminator augmentation args.augment_args.pop('apply_args', None) args.augment_args.tune_target = 0.6 else: raise UserError(f'--cmethod={cmethod} not supported') if dcap is not None: assert isinstance(dcap, float) if not dcap > 0: raise UserError('--dcap must be positive') desc += f'-dcap{dcap:g}' args.D_args.fmap_base = max(int(args.D_args.fmap_base * dcap), 1) args.D_args.fmap_max = max(int(args.D_args.fmap_max * dcap), 1) # ---------------------------------- # Transfer learning: resume, freezed # ---------------------------------- resume_specs = { 'ffhq256': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/transfer-learning-source-nets/ffhq-res256-mirror-paper256-noaug.pkl', 'ffhq512': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/transfer-learning-source-nets/ffhq-res512-mirror-stylegan2-noaug.pkl', 'ffhq1024': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/transfer-learning-source-nets/ffhq-res1024-mirror-stylegan2-noaug.pkl', 'celebahq256': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/transfer-learning-source-nets/celebahq-res256-mirror-paper256-kimg100000-ada-target0.5.pkl', 'lsundog256': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/transfer-learning-source-nets/lsundog-res256-paper256-kimg100000-noaug.pkl', } assert resume is None or isinstance(resume, str) if resume is None: resume = 'noresume' elif resume == 'noresume': desc += '-noresume' elif resume in resume_specs: desc += f'-resume{resume}' args.resume_pkl = resume_specs[resume] # predefined url else: desc += '-resumecustom' args.resume_pkl = resume # custom path or url if resume != 'noresume': args.augment_args.tune_kimg = 100 # make ADA react faster at the beginning args.G_smoothing_rampup = None # disable EMA rampup if freezed is not None: assert isinstance(freezed, int) if not freezed >= 0: raise UserError('--freezed must be non-negative') desc += f'-freezed{freezed:d}' args.D_args.freeze_layers = freezed return desc, args #---------------------------------------------------------------------------- def run_training(outdir, seed, dry_run, **hyperparam_options): # Setup training options. tflib.init_tf({'rnd.np_random_seed': seed}) run_desc, training_options = setup_training_options(**hyperparam_options) # Pick output directory. prev_run_dirs = [] if os.path.isdir(outdir): prev_run_dirs = [x for x in os.listdir(outdir) if os.path.isdir(os.path.join(outdir, x))] prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs] prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None] cur_run_id = max(prev_run_ids, default=-1) + 1 training_options.run_dir = os.path.join(outdir, f'{cur_run_id:05d}-{run_desc}') assert not os.path.exists(training_options.run_dir) # Print options. print() print('Training options:') print(json.dumps(training_options, indent=2)) print() print(f'Output directory: {training_options.run_dir}') print(f'Training data: {training_options.train_dataset_args.path}') print(f'Training length: {training_options.total_kimg} kimg') print(f'Resolution: {training_options.train_dataset_args.resolution}') print(f'Number of GPUs: {training_options.num_gpus}') print() # Dry run? if dry_run: print('Dry run; exiting.') return # Kick off training. print('Creating output directory...') os.makedirs(training_options.run_dir) with open(os.path.join(training_options.run_dir, 'training_options.json'), 'wt') as f: json.dump(training_options, f, indent=2) with dnnlib.util.Logger(os.path.join(training_options.run_dir, 'log.txt')): training_loop.training_loop(**training_options) #---------------------------------------------------------------------------- def _str_to_bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True if v.lower() in ('no', 'false', 'f', 'n', '0'): return False raise argparse.ArgumentTypeError('Boolean value expected.') def _parse_comma_sep(s): if s is None or s.lower() == 'none' or s == '': return [] return s.split(',') #---------------------------------------------------------------------------- _cmdline_help_epilog = '''examples: # Train custom dataset using 1 GPU. python %(prog)s --outdir=~/training-runs --gpus=1 --data=~/datasets/custom # Train class-conditional CIFAR-10 using 2 GPUs. python %(prog)s --outdir=~/training-runs --gpus=2 --data=~/datasets/cifar10c \\ --cfg=cifar # Transfer learn MetFaces from FFHQ using 4 GPUs. python %(prog)s --outdir=~/training-runs --gpus=4 --data=~/datasets/metfaces \\ --cfg=paper1024 --mirror=1 --resume=ffhq1024 --snap=10 # Reproduce original StyleGAN2 config F. python %(prog)s --outdir=~/training-runs --gpus=8 --data=~/datasets/ffhq \\ --cfg=stylegan2 --res=1024 --mirror=1 --aug=noaug available base configs (--cfg): auto Automatically select reasonable defaults based on resolution and GPU count. Good starting point for new datasets. stylegan2 Reproduce results for StyleGAN2 config F at 1024x1024. paper256 Reproduce results for FFHQ and LSUN Cat at 256x256. paper512 Reproduce results for BreCaHAD and AFHQ at 512x512. paper1024 Reproduce results for MetFaces at 1024x1024. cifar Reproduce results for CIFAR-10 (tuned configuration). cifarbaseline Reproduce results for CIFAR-10 (baseline configuration). transfer learning source networks (--resume): ffhq256 FFHQ trained at 256x256 resolution. ffhq512 FFHQ trained at 512x512 resolution. ffhq1024 FFHQ trained at 1024x1024 resolution. celebahq256 CelebA-HQ trained at 256x256 resolution. lsundog256 LSUN Dog trained at 256x256 resolution. Custom network pickle. ''' #---------------------------------------------------------------------------- def main(): parser = argparse.ArgumentParser( description='Train a GAN using the techniques described in the paper\n"Training Generative Adversarial Networks with Limited Data".', epilog=_cmdline_help_epilog, formatter_class=argparse.RawDescriptionHelpFormatter ) group = parser.add_argument_group('general options') group.add_argument('--outdir', help='Where to save the results (required)', required=True, metavar='DIR') group.add_argument('--gpus', help='Number of GPUs to use (default: 1 gpu)', type=int, metavar='INT') group.add_argument('--snap', help='Snapshot interval (default: 50 ticks)', type=int, metavar='INT') group.add_argument('--seed', help='Random seed (default: %(default)s)', type=int, default=1000, metavar='INT') group.add_argument('-n', '--dry-run', help='Print training options and exit', action='store_true', default=False) group = parser.add_argument_group('training dataset') group.add_argument('--data', help='Training dataset path (required)', metavar='PATH', required=True) group.add_argument('--res', help='Dataset resolution (default: highest available)', type=int, metavar='INT') group.add_argument('--mirror', help='Augment dataset with x-flips (default: false)', type=_str_to_bool, metavar='BOOL') group = parser.add_argument_group('metrics') group.add_argument('--metrics', help='Comma-separated list or "none" (default: fid50k_full)', type=_parse_comma_sep, metavar='LIST') group.add_argument('--metricdata', help='Dataset to evaluate metrics against (optional)', metavar='PATH') group = parser.add_argument_group('base config') group.add_argument('--cfg', help='Base config (default: auto)', choices=['auto', 'stylegan2', 'paper256', 'paper512', 'paper1024', 'cifar', 'cifarbaseline']) group.add_argument('--gamma', help='Override R1 gamma', type=float, metavar='FLOAT') group.add_argument('--kimg', help='Override training duration', type=int, metavar='INT') group = parser.add_argument_group('discriminator augmentation') group.add_argument('--aug', help='Augmentation mode (default: ada)', choices=['noaug', 'ada', 'fixed', 'adarv']) group.add_argument('--p', help='Specify augmentation probability for --aug=fixed', type=float, metavar='FLOAT') group.add_argument('--target', help='Override ADA target for --aug=ada and --aug=adarv', type=float) group.add_argument('--augpipe', help='Augmentation pipeline (default: bgc)', choices=['blit', 'geom', 'color', 'filter', 'noise', 'cutout', 'bg', 'bgc', 'bgcf', 'bgcfn', 'bgcfnc']) group = parser.add_argument_group('comparison methods') group.add_argument('--cmethod', help='Comparison method (default: nocmethod)', choices=['nocmethod', 'bcr', 'zcr', 'pagan', 'wgangp', 'auxrot', 'spectralnorm', 'shallowmap', 'adropout']) group.add_argument('--dcap', help='Multiplier for discriminator capacity', type=float, metavar='FLOAT') group = parser.add_argument_group('transfer learning') group.add_argument('--resume', help='Resume from network pickle (default: noresume)') group.add_argument('--freezed', help='Freeze-D (default: 0 discriminator layers)', type=int, metavar='INT') args = parser.parse_args() try: run_training(**vars(args)) except UserError as err: print(f'Error: {err}') exit(1) #---------------------------------------------------------------------------- if __name__ == "__main__": main() #----------------------------------------------------------------------------