# Copyright (c) 2019, NVIDIA Corporation. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://nvlabs.github.io/stylegan2/license.html import argparse import os import sys import dnnlib import dnnlib.tflib as tflib import pretrained_networks from metrics import metric_base from metrics.metric_defaults import metric_defaults #---------------------------------------------------------------------------- def run(network_pkl, metrics, dataset, data_dir, mirror_augment): print('Evaluating metrics "%s" for "%s"...' % (','.join(metrics), network_pkl)) tflib.init_tf() network_pkl = pretrained_networks.get_path_or_url(network_pkl) dataset_args = dnnlib.EasyDict(tfrecord_dir=dataset, shuffle_mb=0) num_gpus = dnnlib.submit_config.num_gpus metric_group = metric_base.MetricGroup([metric_defaults[metric] for metric in metrics]) metric_group.run(network_pkl, data_dir=data_dir, dataset_args=dataset_args, mirror_augment=mirror_augment, num_gpus=num_gpus) #---------------------------------------------------------------------------- def _str_to_bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') #---------------------------------------------------------------------------- _examples = '''examples: python %(prog)s --data-dir=~/datasets --network=gdrive:networks/stylegan2-ffhq-config-f.pkl --metrics=fid50k,ppl_wend --dataset=ffhq --mirror-augment=true valid metrics: ''' + ', '.join(sorted([x for x in metric_defaults.keys()])) + ''' ''' def main(): parser = argparse.ArgumentParser( description='Run StyleGAN2 metrics.', epilog=_examples, formatter_class=argparse.RawDescriptionHelpFormatter ) parser.add_argument('--result-dir', help='Root directory for run results (default: %(default)s)', default='results', metavar='DIR') parser.add_argument('--network', help='Network pickle filename', dest='network_pkl', required=True) parser.add_argument('--metrics', help='Metrics to compute (default: %(default)s)', default='fid50k', type=lambda x: x.split(',')) parser.add_argument('--dataset', help='Training dataset', required=True) parser.add_argument('--data-dir', help='Dataset root directory', required=True) parser.add_argument('--mirror-augment', help='Mirror augment (default: %(default)s)', default=False, type=_str_to_bool, metavar='BOOL') parser.add_argument('--num-gpus', help='Number of GPUs to use', type=int, default=1, metavar='N') args = parser.parse_args() if not os.path.exists(args.data_dir): print ('Error: dataset root directory does not exist.') sys.exit(1) kwargs = vars(args) sc = dnnlib.SubmitConfig() sc.num_gpus = kwargs.pop('num_gpus') sc.submit_target = dnnlib.SubmitTarget.LOCAL sc.local.do_not_copy_source_files = True sc.run_dir_root = kwargs.pop('result_dir') sc.run_desc = 'run-metrics' dnnlib.submit_run(sc, 'run_metrics.run', **kwargs) #---------------------------------------------------------------------------- if __name__ == "__main__": main() #----------------------------------------------------------------------------