disentangled-image-editing-final-project
/
ContraCLIP
/models
/genforce
/runners
/losses
/encoder_loss.py
# python3.7 | |
"""Defines loss functions for encoder training.""" | |
import torch | |
import torch.nn.functional as F | |
from models import build_perceptual | |
__all__ = ['EncoderLoss'] | |
class EncoderLoss(object): | |
"""Contains the class to compute logistic GAN loss.""" | |
def __init__(self, | |
runner, | |
d_loss_kwargs=None, | |
e_loss_kwargs=None, | |
perceptual_kwargs=None): | |
"""Initializes with models and arguments for computing losses.""" | |
self.d_loss_kwargs = d_loss_kwargs or dict() | |
self.e_loss_kwargs = e_loss_kwargs or dict() | |
self.r1_gamma = self.d_loss_kwargs.get('r1_gamma', 10.0) | |
self.r2_gamma = self.d_loss_kwargs.get('r2_gamma', 0.0) | |
self.perceptual_lw = self.e_loss_kwargs.get('perceptual_lw', 5e-5) | |
self.adv_lw = self.e_loss_kwargs.get('adv_lw', 0.1) | |
self.perceptual_model = build_perceptual(**perceptual_kwargs).cuda() | |
self.perceptual_model.eval() | |
for param in self.perceptual_model.parameters(): | |
param.requires_grad = False | |
runner.space_of_latent = runner.config.space_of_latent | |
runner.running_stats.add( | |
f'recon_loss', log_format='.3f', log_strategy='AVERAGE') | |
runner.running_stats.add( | |
f'adv_loss', log_format='.3f', log_strategy='AVERAGE') | |
runner.running_stats.add( | |
f'loss_fake', log_format='.3f', log_strategy='AVERAGE') | |
runner.running_stats.add( | |
f'loss_real', log_format='.3f', log_strategy='AVERAGE') | |
if self.r1_gamma != 0: | |
runner.running_stats.add( | |
f'real_grad_penalty', log_format='.3f', log_strategy='AVERAGE') | |
if self.r2_gamma != 0: | |
runner.running_stats.add( | |
f'fake_grad_penalty', log_format='.3f', log_strategy='AVERAGE') | |
def compute_grad_penalty(images, scores): | |
"""Computes gradient penalty.""" | |
image_grad = torch.autograd.grad( | |
outputs=scores.sum(), | |
inputs=images, | |
create_graph=True, | |
retain_graph=True)[0].view(images.shape[0], -1) | |
penalty = image_grad.pow(2).sum(dim=1).mean() | |
return penalty | |
def d_loss(self, runner, data): | |
"""Computes loss for discriminator.""" | |
if 'generator_smooth' in runner.models: | |
G = runner.get_module(runner.models['generator_smooth']) | |
else: | |
G = runner.get_module(runner.models['generator']) | |
G.eval() | |
D = runner.models['discriminator'] | |
E = runner.models['encoder'] | |
reals = data['image'] | |
reals.requires_grad = True | |
with torch.no_grad(): | |
latents = E(reals) | |
if runner.space_of_latent == 'z': | |
reals_rec = G(latents, **runner.G_kwargs_val)['image'] | |
elif runner.space_of_latent == 'wp': | |
reals_rec = G.synthesis(latents, | |
**runner.G_kwargs_val)['image'] | |
elif runner.space_of_latent == 'y': | |
G.set_space_of_latent('y') | |
reals_rec = G.synthesis(latents, | |
**runner.G_kwargs_val)['image'] | |
real_scores = D(reals, **runner.D_kwargs_train) | |
fake_scores = D(reals_rec, **runner.D_kwargs_train) | |
loss_fake = F.softplus(fake_scores).mean() | |
loss_real = F.softplus(-real_scores).mean() | |
d_loss = loss_fake + loss_real | |
runner.running_stats.update({'loss_fake': loss_fake.item()}) | |
runner.running_stats.update({'loss_real': loss_real.item()}) | |
real_grad_penalty = torch.zeros_like(d_loss) | |
fake_grad_penalty = torch.zeros_like(d_loss) | |
if self.r1_gamma: | |
real_grad_penalty = self.compute_grad_penalty(reals, real_scores) | |
runner.running_stats.update( | |
{'real_grad_penalty': real_grad_penalty.item()}) | |
if self.r2_gamma: | |
fake_grad_penalty = self.compute_grad_penalty( | |
reals_rec, fake_scores) | |
runner.running_stats.update( | |
{'fake_grad_penalty': fake_grad_penalty.item()}) | |
return (d_loss + | |
real_grad_penalty * (self.r1_gamma * 0.5) + | |
fake_grad_penalty * (self.r2_gamma * 0.5)) | |
def e_loss(self, runner, data): | |
"""Computes loss for generator.""" | |
if 'generator_smooth' in runner.models: | |
G = runner.get_module(runner.models['generator_smooth']) | |
else: | |
G = runner.get_module(runner.models['generator']) | |
G.eval() | |
D = runner.models['discriminator'] | |
E = runner.models['encoder'] | |
P = self.perceptual_model | |
# Fetch data | |
reals = data['image'] | |
latents = E(reals) | |
if runner.space_of_latent == 'z': | |
reals_rec = G(latents, **runner.G_kwargs_val)['image'] | |
elif runner.space_of_latent == 'wp': | |
reals_rec = G.synthesis(latents, **runner.G_kwargs_val)['image'] | |
elif runner.space_of_latent == 'y': | |
G.set_space_of_latent('y') | |
reals_rec = G.synthesis(latents, **runner.G_kwargs_val)['image'] | |
loss_pix = F.mse_loss(reals_rec, reals, reduction='mean') | |
loss_feat = self.perceptual_lw * F.mse_loss( | |
P(reals_rec), P(reals), reduction='mean') | |
loss_rec = loss_pix + loss_feat | |
fake_scores = D(reals_rec, **runner.D_kwargs_train) | |
adv_loss = self.adv_lw * F.softplus(-fake_scores).mean() | |
e_loss = loss_pix + loss_feat + adv_loss | |
runner.running_stats.update({'recon_loss': loss_rec.item()}) | |
runner.running_stats.update({'adv_loss': adv_loss.item()}) | |
return e_loss | |