dattarij's picture
adding ContraCLIP folder
8c212a5
raw
history blame
6.71 kB
"""Contains transform functions."""
import cv2
import numpy as np
import PIL.Image
import torch
import torch.nn as nn
import torch.nn.functional as F
__all__ = [
'crop_resize_image', 'progressive_resize_image', 'resize_image',
'normalize_image', 'normalize_latent_code', 'ImageResizing',
'ImageNormalization', 'LatentCodeNormalization',
]
def crop_resize_image(image, size):
"""Crops a square patch and then resizes it to the given size.
Args:
image: The input image to crop and resize.
size: An integer, indicating the target size.
Returns:
An image with target size.
Raises:
TypeError: If the input `image` is not with type `numpy.ndarray`.
ValueError: If the input `image` is not with shape [H, W, C].
"""
if not isinstance(image, np.ndarray):
raise TypeError(f'Input image should be with type `numpy.ndarray`, '
f'but `{type(image)}` is received!')
if image.ndim != 3:
raise ValueError(f'Input image should be with shape [H, W, C], '
f'but `{image.shape}` is received!')
height, width, channel = image.shape
short_side = min(height, width)
image = image[(height - short_side) // 2:(height + short_side) // 2,
(width - short_side) // 2:(width + short_side) // 2]
pil_image = PIL.Image.fromarray(image)
pil_image = pil_image.resize((size, size), PIL.Image.ANTIALIAS)
image = np.asarray(pil_image)
assert image.shape == (size, size, channel)
return image
def progressive_resize_image(image, size):
"""Resizes image to target size progressively.
Different from normal resize, this function will reduce the image size
progressively. In each step, the maximum reduce factor is 2.
NOTE: This function can only handle square images, and can only be used for
downsampling.
Args:
image: The input (square) image to resize.
size: An integer, indicating the target size.
Returns:
An image with target size.
Raises:
TypeError: If the input `image` is not with type `numpy.ndarray`.
ValueError: If the input `image` is not with shape [H, W, C].
"""
if not isinstance(image, np.ndarray):
raise TypeError(f'Input image should be with type `numpy.ndarray`, '
f'but `{type(image)}` is received!')
if image.ndim != 3:
raise ValueError(f'Input image should be with shape [H, W, C], '
f'but `{image.shape}` is received!')
height, width, channel = image.shape
assert height == width
assert height >= size
num_iters = int(np.log2(height) - np.log2(size))
for _ in range(num_iters):
height = max(height // 2, size)
image = cv2.resize(image, (height, height),
interpolation=cv2.INTER_LINEAR)
assert image.shape == (size, size, channel)
return image
def resize_image(image, size):
"""Resizes image to target size.
NOTE: We use adaptive average pooing for image resizing. Instead of bilinear
interpolation, average pooling is able to acquire information from more
pixels, such that the resized results can be with higher quality.
Args:
image: The input image tensor, with shape [C, H, W], to resize.
size: An integer or a tuple of integer, indicating the target size.
Returns:
An image tensor with target size.
Raises:
TypeError: If the input `image` is not with type `torch.Tensor`.
ValueError: If the input `image` is not with shape [C, H, W].
"""
if not isinstance(image, torch.Tensor):
raise TypeError(f'Input image should be with type `torch.Tensor`, '
f'but `{type(image)}` is received!')
if image.ndim != 3:
raise ValueError(f'Input image should be with shape [C, H, W], '
f'but `{image.shape}` is received!')
image = F.adaptive_avg_pool2d(image.unsqueeze(0), size).squeeze(0)
return image
def normalize_image(image, mean=127.5, std=127.5):
"""Normalizes image by subtracting mean and dividing std.
Args:
image: The input image tensor to normalize.
mean: The mean value to subtract from the input tensor. (default: 127.5)
std: The standard deviation to normalize the input tensor. (default:
127.5)
Returns:
A normalized image tensor.
Raises:
TypeError: If the input `image` is not with type `torch.Tensor`.
"""
if not isinstance(image, torch.Tensor):
raise TypeError(f'Input image should be with type `torch.Tensor`, '
f'but `{type(image)}` is received!')
out = (image - mean) / std
return out
def normalize_latent_code(latent_code, adjust_norm=True):
"""Normalizes latent code.
NOTE: The latent code will always be normalized along the last axis.
Meanwhile, if `adjust_norm` is set as `True`, the norm of the result will be
adjusted to `sqrt(latent_code.shape[-1])` in order to avoid too small value.
Args:
latent_code: The input latent code tensor to normalize.
adjust_norm: Whether to adjust the norm of the output. (default: True)
Returns:
A normalized latent code tensor.
Raises:
TypeError: If the input `latent_code` is not with type `torch.Tensor`.
"""
if not isinstance(latent_code, torch.Tensor):
raise TypeError(f'Input latent code should be with type '
f'`torch.Tensor`, but `{type(latent_code)}` is '
f'received!')
dim = latent_code.shape[-1]
norm = latent_code.pow(2).sum(-1, keepdim=True).pow(0.5)
out = latent_code / norm
if adjust_norm:
out = out * (dim ** 0.5)
return out
class ImageResizing(nn.Module):
"""Implements the image resizing layer."""
def __init__(self, size):
super().__init__()
self.size = size
def forward(self, image):
return resize_image(image, self.size)
class ImageNormalization(nn.Module):
"""Implements the image normalization layer."""
def __init__(self, mean=127.5, std=127.5):
super().__init__()
self.mean = mean
self.std = std
def forward(self, image):
return normalize_image(image, self.mean, self.std)
class LatentCodeNormalization(nn.Module):
"""Implements the latent code normalization layer."""
def __init__(self, adjust_norm=True):
super().__init__()
self.adjust_norm = adjust_norm
def forward(self, latent_code):
return normalize_latent_code(latent_code, self.adjust_norm)