File size: 9,881 Bytes
8c212a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, visit
# https://nvlabs.github.io/stylegan2/license.html
"""Multi-resolution input data pipeline."""
import os
import glob
import numpy as np
import tensorflow as tf
import dnnlib
import dnnlib.tflib as tflib
#----------------------------------------------------------------------------
# Dataset class that loads data from tfrecords files.
class TFRecordDataset:
def __init__(self,
tfrecord_dir, # Directory containing a collection of tfrecords files.
resolution = None, # Dataset resolution, None = autodetect.
label_file = None, # Relative path of the labels file, None = autodetect.
max_label_size = 0, # 0 = no labels, 'full' = full labels, <int> = N first label components.
max_images = None, # Maximum number of images to use, None = use all images.
repeat = True, # Repeat dataset indefinitely?
shuffle_mb = 4096, # Shuffle data within specified window (megabytes), 0 = disable shuffling.
prefetch_mb = 2048, # Amount of data to prefetch (megabytes), 0 = disable prefetching.
buffer_mb = 256, # Read buffer size (megabytes).
num_threads = 2): # Number of concurrent threads.
self.tfrecord_dir = tfrecord_dir
self.resolution = None
self.resolution_log2 = None
self.shape = [] # [channels, height, width]
self.dtype = 'uint8'
self.dynamic_range = [0, 255]
self.label_file = label_file
self.label_size = None # components
self.label_dtype = None
self._np_labels = None
self._tf_minibatch_in = None
self._tf_labels_var = None
self._tf_labels_dataset = None
self._tf_datasets = dict()
self._tf_iterator = None
self._tf_init_ops = dict()
self._tf_minibatch_np = None
self._cur_minibatch = -1
self._cur_lod = -1
# List tfrecords files and inspect their shapes.
assert os.path.isdir(self.tfrecord_dir)
tfr_files = sorted(glob.glob(os.path.join(self.tfrecord_dir, '*.tfrecords')))
assert len(tfr_files) >= 1
tfr_shapes = []
for tfr_file in tfr_files:
tfr_opt = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.NONE)
for record in tf.python_io.tf_record_iterator(tfr_file, tfr_opt):
tfr_shapes.append(self.parse_tfrecord_np(record).shape)
break
# Autodetect label filename.
if self.label_file is None:
guess = sorted(glob.glob(os.path.join(self.tfrecord_dir, '*.labels')))
if len(guess):
self.label_file = guess[0]
elif not os.path.isfile(self.label_file):
guess = os.path.join(self.tfrecord_dir, self.label_file)
if os.path.isfile(guess):
self.label_file = guess
# Determine shape and resolution.
max_shape = max(tfr_shapes, key=np.prod)
self.resolution = resolution if resolution is not None else max_shape[1]
self.resolution_log2 = int(np.log2(self.resolution))
self.shape = [max_shape[0], self.resolution, self.resolution]
tfr_lods = [self.resolution_log2 - int(np.log2(shape[1])) for shape in tfr_shapes]
assert all(shape[0] == max_shape[0] for shape in tfr_shapes)
assert all(shape[1] == shape[2] for shape in tfr_shapes)
assert all(shape[1] == self.resolution // (2**lod) for shape, lod in zip(tfr_shapes, tfr_lods))
assert all(lod in tfr_lods for lod in range(self.resolution_log2 - 1))
# Load labels.
assert max_label_size == 'full' or max_label_size >= 0
self._np_labels = np.zeros([1<<30, 0], dtype=np.float32)
if self.label_file is not None and max_label_size != 0:
self._np_labels = np.load(self.label_file)
assert self._np_labels.ndim == 2
if max_label_size != 'full' and self._np_labels.shape[1] > max_label_size:
self._np_labels = self._np_labels[:, :max_label_size]
if max_images is not None and self._np_labels.shape[0] > max_images:
self._np_labels = self._np_labels[:max_images]
self.label_size = self._np_labels.shape[1]
self.label_dtype = self._np_labels.dtype.name
# Build TF expressions.
with tf.name_scope('Dataset'), tf.device('/cpu:0'):
self._tf_minibatch_in = tf.placeholder(tf.int64, name='minibatch_in', shape=[])
self._tf_labels_var = tflib.create_var_with_large_initial_value(self._np_labels, name='labels_var')
self._tf_labels_dataset = tf.data.Dataset.from_tensor_slices(self._tf_labels_var)
for tfr_file, tfr_shape, tfr_lod in zip(tfr_files, tfr_shapes, tfr_lods):
if tfr_lod < 0:
continue
dset = tf.data.TFRecordDataset(tfr_file, compression_type='', buffer_size=buffer_mb<<20)
if max_images is not None:
dset = dset.take(max_images)
dset = dset.map(self.parse_tfrecord_tf, num_parallel_calls=num_threads)
dset = tf.data.Dataset.zip((dset, self._tf_labels_dataset))
bytes_per_item = np.prod(tfr_shape) * np.dtype(self.dtype).itemsize
if shuffle_mb > 0:
dset = dset.shuffle(((shuffle_mb << 20) - 1) // bytes_per_item + 1)
if repeat:
dset = dset.repeat()
if prefetch_mb > 0:
dset = dset.prefetch(((prefetch_mb << 20) - 1) // bytes_per_item + 1)
dset = dset.batch(self._tf_minibatch_in)
self._tf_datasets[tfr_lod] = dset
self._tf_iterator = tf.data.Iterator.from_structure(self._tf_datasets[0].output_types, self._tf_datasets[0].output_shapes)
self._tf_init_ops = {lod: self._tf_iterator.make_initializer(dset) for lod, dset in self._tf_datasets.items()}
def close(self):
pass
# Use the given minibatch size and level-of-detail for the data returned by get_minibatch_tf().
def configure(self, minibatch_size, lod=0):
lod = int(np.floor(lod))
assert minibatch_size >= 1 and lod in self._tf_datasets
if self._cur_minibatch != minibatch_size or self._cur_lod != lod:
self._tf_init_ops[lod].run({self._tf_minibatch_in: minibatch_size})
self._cur_minibatch = minibatch_size
self._cur_lod = lod
# Get next minibatch as TensorFlow expressions.
def get_minibatch_tf(self): # => images, labels
return self._tf_iterator.get_next()
# Get next minibatch as NumPy arrays.
def get_minibatch_np(self, minibatch_size, lod=0): # => images, labels
self.configure(minibatch_size, lod)
with tf.name_scope('Dataset'):
if self._tf_minibatch_np is None:
self._tf_minibatch_np = self.get_minibatch_tf()
return tflib.run(self._tf_minibatch_np)
# Get random labels as TensorFlow expression.
def get_random_labels_tf(self, minibatch_size): # => labels
with tf.name_scope('Dataset'):
if self.label_size > 0:
with tf.device('/cpu:0'):
return tf.gather(self._tf_labels_var, tf.random_uniform([minibatch_size], 0, self._np_labels.shape[0], dtype=tf.int32))
return tf.zeros([minibatch_size, 0], self.label_dtype)
# Get random labels as NumPy array.
def get_random_labels_np(self, minibatch_size): # => labels
if self.label_size > 0:
return self._np_labels[np.random.randint(self._np_labels.shape[0], size=[minibatch_size])]
return np.zeros([minibatch_size, 0], self.label_dtype)
# Parse individual image from a tfrecords file into TensorFlow expression.
@staticmethod
def parse_tfrecord_tf(record):
features = tf.parse_single_example(record, features={
'shape': tf.FixedLenFeature([3], tf.int64),
'data': tf.FixedLenFeature([], tf.string)})
data = tf.decode_raw(features['data'], tf.uint8)
return tf.reshape(data, features['shape'])
# Parse individual image from a tfrecords file into NumPy array.
@staticmethod
def parse_tfrecord_np(record):
ex = tf.train.Example()
ex.ParseFromString(record)
shape = ex.features.feature['shape'].int64_list.value # pylint: disable=no-member
data = ex.features.feature['data'].bytes_list.value[0] # pylint: disable=no-member
return np.fromstring(data, np.uint8).reshape(shape)
#----------------------------------------------------------------------------
# Helper func for constructing a dataset object using the given options.
def load_dataset(class_name=None, data_dir=None, verbose=False, **kwargs):
kwargs = dict(kwargs)
if 'tfrecord_dir' in kwargs:
if class_name is None:
class_name = __name__ + '.TFRecordDataset'
if data_dir is not None:
kwargs['tfrecord_dir'] = os.path.join(data_dir, kwargs['tfrecord_dir'])
assert class_name is not None
if verbose:
print('Streaming data using %s...' % class_name)
dataset = dnnlib.util.get_obj_by_name(class_name)(**kwargs)
if verbose:
print('Dataset shape =', np.int32(dataset.shape).tolist())
print('Dynamic range =', dataset.dynamic_range)
print('Label size =', dataset.label_size)
return dataset
#----------------------------------------------------------------------------
|