File size: 18,193 Bytes
8c212a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
# python3.7
"""Contains the base class for runner.

This runner can be used for both training and inference with multi-threads.
"""

import os
import json
from copy import deepcopy

import torch
import torch.distributed as dist

from datasets import BaseDataset
from datasets import IterDataLoader
from models import build_model
from . import controllers
from . import losses
from . import misc
from .optimizer import build_optimizers
from .running_stats import RunningStats


def _strip_state_dict_prefix(state_dict, prefix='module.'):
    """Removes the name prefix in checkpoint.

    Basically, when the model is deployed in parallel, the prefix `module.` will
    be added to the saved checkpoint. This function is used to remove the
    prefix, which is friendly to checkpoint loading.

    Args:
        state_dict: The state dict where the variable names are processed.
        prefix: The prefix to remove. (default: `module.`)
    """
    if not all(key.startswith(prefix) for key in state_dict.keys()):
        return state_dict

    stripped_state_dict = dict()
    for key in state_dict:
        stripped_state_dict[key.replace(prefix, '')] = state_dict[key]
    return stripped_state_dict


class BaseRunner(object):
    """Defines the base runner class."""

    def __init__(self, config, logger):
        self._name = self.__class__.__name__
        self._config = deepcopy(config)
        self.logger = logger
        self.work_dir = self.config.work_dir
        os.makedirs(self.work_dir, exist_ok=True)

        self.logger.info('Running Configuration:')
        config_str = json.dumps(self.config, indent=4).replace('"', '\'')
        self.logger.print(config_str + '\n')
        with open(os.path.join(self.work_dir, 'config.json'), 'w') as f:
            json.dump(self.config, f, indent=4)
        self._rank = dist.get_rank()
        self._world_size = dist.get_world_size()

        self.batch_size = self.config.batch_size
        self.val_batch_size = self.config.get('val_batch_size', self.batch_size)
        self._iter = 0
        self._start_iter = 0
        self.seen_img = 0
        self.total_iters = self.config.get('total_iters', 0)
        if self.total_iters == 0 and self.config.get('total_img', 0) > 0:
            total_image = self.config.get('total_img')
            total_batch = self.world_size * self.batch_size
            self.total_iters = int(total_image / total_batch + 0.5)

        self.mode = None
        self.train_loader = None
        self.val_loader = None

        self.models = dict()
        self.optimizers = dict()
        self.lr_schedulers = dict()
        self.controllers = []
        self.loss = None

        self.running_stats = RunningStats()
        self.start_time = 0
        self.end_time = 0
        self.timer = controllers.Timer()
        self.timer.start(self)

        self.build_models()
        self.build_controllers()

    def finish(self):
        """Finishes runner by ending controllers and timer."""
        for controller in self.controllers:
            controller.end(self)
        self.timer.end(self)
        self.logger.info(f'Finish runner in '
                         f'{misc.format_time(self.end_time - self.start_time)}')

    @property
    def name(self):
        """Returns the name of the runner."""
        return self._name

    @property
    def config(self):
        """Returns the configuration of the runner."""
        return self._config

    @property
    def rank(self):
        """Returns the rank of the current runner."""
        return self._rank

    @property
    def world_size(self):
        """Returns the world size."""
        return self._world_size

    @property
    def iter(self):
        """Returns the current iteration."""
        return self._iter

    @property
    def start_iter(self):
        """Returns the start iteration."""
        return self._start_iter

    def convert_epoch_to_iter(self, epoch):
        """Converts number of epochs to number of iterations."""
        return int(epoch * len(self.train_loader) + 0.5)

    def build_dataset(self, mode):
        """Builds train/val dataset."""
        if not hasattr(self.config, 'data'):
            return
        assert isinstance(mode, str)
        mode = mode.lower()
        self.logger.info(f'Building `{mode}` dataset ...')
        if mode not in ['train', 'val']:
            raise ValueError(f'Invalid dataset mode `{mode}`!')
        dataset = BaseDataset(**self.config.data[mode])
        if mode == 'train':
            self.train_loader = IterDataLoader(
                dataset=dataset,
                batch_size=self.batch_size,
                shuffle=True,
                num_workers=self.config.data.get('num_workers', 2),
                current_iter=self.iter,
                repeat=self.config.data.get('repeat', 1))
        elif mode == 'val':
            self.val_loader = IterDataLoader(
                dataset=dataset,
                batch_size=self.val_batch_size,
                shuffle=False,
                num_workers=self.config.data.get('num_workers', 2),
                current_iter=0,
                repeat=1)
        else:
            raise NotImplementedError(f'Not implemented dataset mode `{mode}`!')
        self.logger.info(f'Finish building `{mode}` dataset.')

    def build_models(self):
        """Builds models, optimizers, and learning rate schedulers."""
        self.logger.info(f'Building models ...')
        lr_config = dict()
        opt_config = dict()
        for module, module_config in self.config.modules.items():
            model_config = module_config['model']
            self.models[module] = build_model(module=module, **model_config)
            self.models[module].cuda()
            opt_config[module] = module_config.get('opt', None)
            lr_config[module] = module_config.get('lr', None)
        build_optimizers(opt_config, self)
        self.controllers.append(controllers.LRScheduler(lr_config))
        self.logger.info(f'Finish building models.')

        model_info = 'Model structures:\n'
        model_info += '==============================================\n'
        for module in self.models:
            model_info += f'{module}\n'
            model_info += '----------------------------------------------\n'
            model_info += str(self.models[module])
            model_info += '\n'
            model_info += "==============================================\n"
        self.logger.info(model_info)

    def distribute(self):
        """Sets `self.model` as `torch.nn.parallel.DistributedDataParallel`."""
        for name in self.models:
            self.models[name] = torch.nn.parallel.DistributedDataParallel(
                module=self.models[name],
                device_ids=[torch.cuda.current_device()],
                broadcast_buffers=False,
                find_unused_parameters=True)

    @staticmethod
    def get_module(model):
        """Handles distributed model."""
        if hasattr(model, 'module'):
            return model.module
        return model

    def build_controllers(self):
        """Builds additional controllers besides LRScheduler."""
        if not hasattr(self.config, 'controllers'):
            return
        self.logger.info(f'Building controllers ...')
        for key, ctrl_config in self.config.controllers.items():
            self.controllers.append(getattr(controllers, key)(ctrl_config))
        self.controllers.sort(key=lambda x: x.priority)
        for controller in self.controllers:
            controller.start(self)
        self.logger.info(f'Finish building controllers.')

    def build_loss(self):
        """Builds loss functions."""
        if not hasattr(self.config, 'loss'):
            return
        self.logger.info(f'Building loss function ...')
        loss_config = deepcopy(self.config.loss)
        loss_type = loss_config.pop('type')
        self.loss = getattr(losses, loss_type)(self, **loss_config)
        self.logger.info(f'Finish building loss function.')

    def pre_execute_controllers(self):
        """Pre-executes all controllers in order of priority."""
        for controller in self.controllers:
            controller.pre_execute(self)

    def post_execute_controllers(self):
        """Post-executes all controllers in order of priority."""
        for controller in self.controllers:
            controller.post_execute(self)

    def cpu(self):
        """Puts models to CPU."""
        for name in self.models:
            self.models[name].cpu()

    def cuda(self):
        """Puts models to CUDA."""
        for name in self.models:
            self.models[name].cuda()

    def set_model_requires_grad(self, name, requires_grad):
        """Sets the `requires_grad` configuration for a particular model."""
        for param in self.models[name].parameters():
            param.requires_grad = requires_grad

    def set_models_requires_grad(self, requires_grad):
        """Sets the `requires_grad` configuration for all models."""
        for name in self.models:
            self.set_model_requires_grad(name, requires_grad)

    def set_model_mode(self, name, mode):
        """Sets the `train/val` mode for a particular model."""
        if isinstance(mode, str):
            mode = mode.lower()
        if mode == 'train' or mode is True:
            self.models[name].train()
        elif mode in ['val', 'test', 'eval'] or mode is False:
            self.models[name].eval()
        else:
            raise ValueError(f'Invalid model mode `{mode}`!')

    def set_mode(self, mode):
        """Sets the `train/val` mode for all models."""
        self.mode = mode
        for name in self.models:
            self.set_model_mode(name, mode)

    def train_step(self, data, **train_kwargs):
        """Executes one training step."""
        raise NotImplementedError('Should be implemented in derived class.')

    def train(self, **train_kwargs):
        """Training function."""
        self.set_mode('train')
        self.distribute()
        self.build_dataset('train')
        self.build_loss()

        self.logger.print()
        self.logger.info(f'Start training.')
        if self.total_iters == 0:
            total_epochs = self.config.get('total_epochs', 0)
            self.total_iters = self.convert_epoch_to_iter(total_epochs)
        assert self.total_iters > 0
        while self.iter < self.total_iters:
            self._iter += 1
            self.pre_execute_controllers()
            data_batch = next(self.train_loader)
            self.timer.pre_execute(self)
            for key in data_batch:
                assert data_batch[key].shape[0] == self.batch_size
                data_batch[key] = data_batch[key].cuda(
                    torch.cuda.current_device(), non_blocking=True)
            self.train_step(data_batch, **train_kwargs)
            self.seen_img += self.batch_size * self.world_size
            self.timer.post_execute(self)
            self.post_execute_controllers()
        self.finish()

    def val(self, **val_kwargs):
        """Validation function."""
        raise NotImplementedError('Should be implemented in derived class.')

    def save(self,
             filepath,
             running_metadata=True,
             learning_rate=True,
             optimizer=True,
             running_stats=False):
        """Saves the current running status.
        Args:
            filepath: File path to save the checkpoint.
            running_metadata: Whether to save the running metadata, such as
                batch size, current iteration, etc. (default: True)
            learning_rate: Whether to save the learning rate. (default: True)
            optimizer: Whether to save the optimizer. (default: True)
            running_stats: Whether to save the running stats. (default: False)
        """
        checkpoint = dict()
        # Models.
        checkpoint['models'] = dict()
        for name, model in self.models.items():
            checkpoint['models'][name] = self.get_module(model).state_dict()
        # Running metadata.
        if running_metadata:
            checkpoint['running_metadata'] = {
                'iter': self.iter,
                'seen_img': self.seen_img,
            }
        # Optimizers.
        if optimizer:
            checkpoint['optimizers'] = dict()
            for opt_name, opt in self.optimizers.items():
                checkpoint['optimizers'][opt_name] = opt.state_dict()
        # Learning rates.
        if learning_rate:
            checkpoint['learning_rates'] = dict()
            for lr_name, lr in self.lr_schedulers.items():
                checkpoint['learning_rates'][lr_name] = lr.state_dict()
        # Running stats.
        # TODO: Test saving and loading running stats.
        if running_stats:
            checkpoint['running_stats'] = self.running_stats
        # Save checkpoint.
        os.makedirs(os.path.dirname(filepath), exist_ok=True)
        torch.save(checkpoint, filepath)
        self.logger.info(f'Successfully saved checkpoint to `{filepath}`.')

    def load(self,
             filepath,
             running_metadata=True,
             learning_rate=True,
             optimizer=True,
             running_stats=False,
             map_location='cpu'):
        """Loads previous running status.

        Args:
            filepath: File path to load the checkpoint.
            running_metadata: Whether to load the running metadata, such as
                batch size, current iteration, etc. (default: True)
            learning_rate: Whether to load the learning rate. (default: True)
            optimizer: Whether to load the optimizer. (default: True)
            running_stats: Whether to load the running stats. (default: False)
            map_location: Map location used for model loading. (default: `cpu`)
        """
        self.logger.info(f'Resuming from checkpoint `{filepath}` ...')
        if not os.path.isfile(filepath):
            raise IOError(f'Checkpoint `{filepath}` does not exist!')
        map_location = map_location.lower()
        assert map_location in ['cpu', 'gpu']
        if map_location == 'gpu':
            device = torch.cuda.current_device()
            map_location = lambda storage, location: storage.cuda(device)
        checkpoint = torch.load(filepath, map_location=map_location)
        # Load models.
        if 'models' not in checkpoint:
            checkpoint = {'models': checkpoint}
        for model_name, model in self.models.items():
            if model_name not in checkpoint['models']:
                self.logger.warning(f'Model `{model_name}` is not included in '
                                    f'the checkpoint, and hence will NOT be '
                                    f'loaded!')
                continue
            state_dict = _strip_state_dict_prefix(
                checkpoint['models'][model_name])
            model.load_state_dict(state_dict)
            self.logger.info(f'  Successfully loaded model `{model_name}`.')
        # Load running metedata.
        if running_metadata:
            if 'running_metadata' not in checkpoint:
                self.logger.warning(f'Running metadata is not included in the '
                                    f'checkpoint, and hence will NOT be '
                                    f'loaded!')
            else:
                self._iter = checkpoint['running_metadata']['iter']
                self._start_iter = self._iter
                self.seen_img = checkpoint['running_metadata']['seen_img']
        # Load optimizers.
        if optimizer:
            if 'optimizers' not in checkpoint:
                self.logger.warning(f'Optimizers are not included in the '
                                    f'checkpoint, and hence will NOT be '
                                    f'loaded!')
            else:
                for opt_name, opt in self.optimizers.items():
                    if opt_name not in checkpoint['optimizers']:
                        self.logger.warning(f'Optimizer `{opt_name}` is not '
                                            f'included in the checkpoint, and '
                                            f'hence will NOT be loaded!')
                        continue
                    opt.load_state_dict(checkpoint['optimizers'][opt_name])
                    self.logger.info(f'  Successfully loaded optimizer '
                                     f'`{opt_name}`.')
        # Load learning rates.
        if learning_rate:
            if 'learning_rates' not in checkpoint:
                self.logger.warning(f'Learning rates are not included in the '
                                    f'checkpoint, and hence will NOT be '
                                    f'loaded!')
            else:
                for lr_name, lr in self.lr_schedulers.items():
                    if lr_name not in checkpoint['learning_rates']:
                        self.logger.warning(f'Learning rate `{lr_name}` is not '
                                            f'included in the checkpoint, and '
                                            f'hence will NOT be loaded!')
                        continue
                    lr.load_state_dict(checkpoint['learning_rates'][lr_name])
                    self.logger.info(f'  Successfully loaded learning rate '
                                     f'`{lr_name}`.')
        # Load running stats.
        if running_stats:
            if 'running_stats' not in checkpoint:
                self.logger.warning(f'Running stats is not included in the '
                                    f'checkpoint, and hence will NOT be '
                                    f'loaded!')
            else:
                self.running_stats = deepcopy(checkpoint['running_stats'])
                self.logger.info(f'  Successfully loaded running stats.')
        # Log message.
        tailing_message = ''
        if running_metadata and 'running_metadata' in checkpoint:
            tailing_message = f' (iteration {self.iter})'
        self.logger.info(f'Successfully resumed from checkpoint `{filepath}`.'
                         f'{tailing_message}')