File size: 13,064 Bytes
8c212a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
import os
import sys
import glob
import datetime
import pickle
import re
import numpy as np
from collections import OrderedDict
import scipy.ndimage
import PIL.Image
import config
import dataset
import legacy
#----------------------------------------------------------------------------
# Convenience wrappers for pickle that are able to load data produced by
# older versions of the code.
def load_pkl(filename):
with open(filename, 'rb') as file:
return legacy.LegacyUnpickler(file, encoding='latin1').load()
def save_pkl(obj, filename):
with open(filename, 'wb') as file:
pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL)
#----------------------------------------------------------------------------
# Image utils.
def adjust_dynamic_range(data, drange_in, drange_out):
if drange_in != drange_out:
scale = (np.float32(drange_out[1]) - np.float32(drange_out[0])) / (np.float32(drange_in[1]) - np.float32(drange_in[0]))
bias = (np.float32(drange_out[0]) - np.float32(drange_in[0]) * scale)
data = data * scale + bias
return data
def create_image_grid(images, grid_size=None):
assert images.ndim == 3 or images.ndim == 4
num, img_w, img_h = images.shape[0], images.shape[-1], images.shape[-2]
if grid_size is not None:
grid_w, grid_h = tuple(grid_size)
else:
grid_w = max(int(np.ceil(np.sqrt(num))), 1)
grid_h = max((num - 1) // grid_w + 1, 1)
grid = np.zeros(list(images.shape[1:-2]) + [grid_h * img_h, grid_w * img_w], dtype=images.dtype)
for idx in range(num):
x = (idx % grid_w) * img_w
y = (idx // grid_w) * img_h
grid[..., y : y + img_h, x : x + img_w] = images[idx]
return grid
def convert_to_pil_image(image, drange=[0,1]):
assert image.ndim == 2 or image.ndim == 3
if image.ndim == 3:
if image.shape[0] == 1:
image = image[0] # grayscale CHW => HW
else:
image = image.transpose(1, 2, 0) # CHW -> HWC
image = adjust_dynamic_range(image, drange, [0,255])
image = np.rint(image).clip(0, 255).astype(np.uint8)
format = 'RGB' if image.ndim == 3 else 'L'
return PIL.Image.fromarray(image, format)
def save_image(image, filename, drange=[0,1], quality=95):
img = convert_to_pil_image(image, drange)
if '.jpg' in filename:
img.save(filename,"JPEG", quality=quality, optimize=True)
else:
img.save(filename)
def save_image_grid(images, filename, drange=[0,1], grid_size=None):
convert_to_pil_image(create_image_grid(images, grid_size), drange).save(filename)
#----------------------------------------------------------------------------
# Logging of stdout and stderr to a file.
class OutputLogger(object):
def __init__(self):
self.file = None
self.buffer = ''
def set_log_file(self, filename, mode='wt'):
assert self.file is None
self.file = open(filename, mode)
if self.buffer is not None:
self.file.write(self.buffer)
self.buffer = None
def write(self, data):
if self.file is not None:
self.file.write(data)
if self.buffer is not None:
self.buffer += data
def flush(self):
if self.file is not None:
self.file.flush()
class TeeOutputStream(object):
def __init__(self, child_streams, autoflush=False):
self.child_streams = child_streams
self.autoflush = autoflush
def write(self, data):
for stream in self.child_streams:
stream.write(data)
if self.autoflush:
self.flush()
def flush(self):
for stream in self.child_streams:
stream.flush()
output_logger = None
def init_output_logging():
global output_logger
if output_logger is None:
output_logger = OutputLogger()
sys.stdout = TeeOutputStream([sys.stdout, output_logger], autoflush=True)
sys.stderr = TeeOutputStream([sys.stderr, output_logger], autoflush=True)
def set_output_log_file(filename, mode='wt'):
if output_logger is not None:
output_logger.set_log_file(filename, mode)
#----------------------------------------------------------------------------
# Reporting results.
def create_result_subdir(result_dir, desc):
# Select run ID and create subdir.
while True:
run_id = 0
for fname in glob.glob(os.path.join(result_dir, '*')):
try:
fbase = os.path.basename(fname)
ford = int(fbase[:fbase.find('-')])
run_id = max(run_id, ford + 1)
except ValueError:
pass
result_subdir = os.path.join(result_dir, '%03d-%s' % (run_id, desc))
try:
os.makedirs(result_subdir)
break
except OSError:
if os.path.isdir(result_subdir):
continue
raise
print("Saving results to", result_subdir)
set_output_log_file(os.path.join(result_subdir, 'log.txt'))
# Export config.
try:
with open(os.path.join(result_subdir, 'config.txt'), 'wt') as fout:
for k, v in sorted(config.__dict__.items()):
if not k.startswith('_'):
fout.write("%s = %s\n" % (k, str(v)))
except:
pass
return result_subdir
def format_time(seconds):
s = int(np.rint(seconds))
if s < 60: return '%ds' % (s)
elif s < 60*60: return '%dm %02ds' % (s // 60, s % 60)
elif s < 24*60*60: return '%dh %02dm %02ds' % (s // (60*60), (s // 60) % 60, s % 60)
else: return '%dd %02dh %02dm' % (s // (24*60*60), (s // (60*60)) % 24, (s // 60) % 60)
#----------------------------------------------------------------------------
# Locating results.
def locate_result_subdir(run_id_or_result_subdir):
if isinstance(run_id_or_result_subdir, str) and os.path.isdir(run_id_or_result_subdir):
return run_id_or_result_subdir
searchdirs = []
searchdirs += ['']
searchdirs += ['results']
searchdirs += ['networks']
for searchdir in searchdirs:
dir = config.result_dir if searchdir == '' else os.path.join(config.result_dir, searchdir)
dir = os.path.join(dir, str(run_id_or_result_subdir))
if os.path.isdir(dir):
return dir
prefix = '%03d' % run_id_or_result_subdir if isinstance(run_id_or_result_subdir, int) else str(run_id_or_result_subdir)
dirs = sorted(glob.glob(os.path.join(config.result_dir, searchdir, prefix + '-*')))
dirs = [dir for dir in dirs if os.path.isdir(dir)]
if len(dirs) == 1:
return dirs[0]
raise IOError('Cannot locate result subdir for run', run_id_or_result_subdir)
def list_network_pkls(run_id_or_result_subdir, include_final=True):
result_subdir = locate_result_subdir(run_id_or_result_subdir)
pkls = sorted(glob.glob(os.path.join(result_subdir, 'network-*.pkl')))
if len(pkls) >= 1 and os.path.basename(pkls[0]) == 'network-final.pkl':
if include_final:
pkls.append(pkls[0])
del pkls[0]
return pkls
def locate_network_pkl(run_id_or_result_subdir_or_network_pkl, snapshot=None):
if isinstance(run_id_or_result_subdir_or_network_pkl, str) and os.path.isfile(run_id_or_result_subdir_or_network_pkl):
return run_id_or_result_subdir_or_network_pkl
pkls = list_network_pkls(run_id_or_result_subdir_or_network_pkl)
if len(pkls) >= 1 and snapshot is None:
return pkls[-1]
for pkl in pkls:
try:
name = os.path.splitext(os.path.basename(pkl))[0]
number = int(name.split('-')[-1])
if number == snapshot:
return pkl
except ValueError: pass
except IndexError: pass
raise IOError('Cannot locate network pkl for snapshot', snapshot)
def get_id_string_for_network_pkl(network_pkl):
p = network_pkl.replace('.pkl', '').replace('\\', '/').split('/')
return '-'.join(p[max(len(p) - 2, 0):])
#----------------------------------------------------------------------------
# Loading and using trained networks.
def load_network_pkl(run_id_or_result_subdir_or_network_pkl, snapshot=None):
return load_pkl(locate_network_pkl(run_id_or_result_subdir_or_network_pkl, snapshot))
def random_latents(num_latents, G, random_state=None):
if random_state is not None:
return random_state.randn(num_latents, *G.input_shape[1:]).astype(np.float32)
else:
return np.random.randn(num_latents, *G.input_shape[1:]).astype(np.float32)
def load_dataset_for_previous_run(run_id, **kwargs): # => dataset_obj, mirror_augment
result_subdir = locate_result_subdir(run_id)
# Parse config.txt.
parsed_cfg = dict()
with open(os.path.join(result_subdir, 'config.txt'), 'rt') as f:
for line in f:
if line.startswith('dataset =') or line.startswith('train ='):
exec(line, parsed_cfg, parsed_cfg)
dataset_cfg = parsed_cfg.get('dataset', dict())
train_cfg = parsed_cfg.get('train', dict())
mirror_augment = train_cfg.get('mirror_augment', False)
# Handle legacy options.
if 'h5_path' in dataset_cfg:
dataset_cfg['tfrecord_dir'] = dataset_cfg.pop('h5_path').replace('.h5', '')
if 'mirror_augment' in dataset_cfg:
mirror_augment = dataset_cfg.pop('mirror_augment')
if 'max_labels' in dataset_cfg:
v = dataset_cfg.pop('max_labels')
if v is None: v = 0
if v == 'all': v = 'full'
dataset_cfg['max_label_size'] = v
if 'max_images' in dataset_cfg:
dataset_cfg.pop('max_images')
# Handle legacy dataset names.
v = dataset_cfg['tfrecord_dir']
v = v.replace('-32x32', '').replace('-32', '')
v = v.replace('-128x128', '').replace('-128', '')
v = v.replace('-256x256', '').replace('-256', '')
v = v.replace('-1024x1024', '').replace('-1024', '')
v = v.replace('celeba-hq', 'celebahq')
v = v.replace('cifar-10', 'cifar10')
v = v.replace('cifar-100', 'cifar100')
v = v.replace('mnist-rgb', 'mnistrgb')
v = re.sub('lsun-100k-([^-]*)', 'lsun-\\1-100k', v)
v = re.sub('lsun-full-([^-]*)', 'lsun-\\1-full', v)
dataset_cfg['tfrecord_dir'] = v
# Load dataset.
dataset_cfg.update(kwargs)
dataset_obj = dataset.load_dataset(data_dir=config.data_dir, **dataset_cfg)
return dataset_obj, mirror_augment
def apply_mirror_augment(minibatch):
mask = np.random.rand(minibatch.shape[0]) < 0.5
minibatch = np.array(minibatch)
minibatch[mask] = minibatch[mask, :, :, ::-1]
return minibatch
#----------------------------------------------------------------------------
# Text labels.
_text_label_cache = OrderedDict()
def draw_text_label(img, text, x, y, alignx=0.5, aligny=0.5, color=255, opacity=1.0, glow_opacity=1.0, **kwargs):
color = np.array(color).flatten().astype(np.float32)
assert img.ndim == 3 and img.shape[2] == color.size or color.size == 1
alpha, glow = setup_text_label(text, **kwargs)
xx, yy = int(np.rint(x - alpha.shape[1] * alignx)), int(np.rint(y - alpha.shape[0] * aligny))
xb, yb = max(-xx, 0), max(-yy, 0)
xe, ye = min(alpha.shape[1], img.shape[1] - xx), min(alpha.shape[0], img.shape[0] - yy)
img = np.array(img)
slice = img[yy+yb : yy+ye, xx+xb : xx+xe, :]
slice[:] = slice * (1.0 - (1.0 - (1.0 - alpha[yb:ye, xb:xe]) * (1.0 - glow[yb:ye, xb:xe] * glow_opacity)) * opacity)[:, :, np.newaxis]
slice[:] = slice + alpha[yb:ye, xb:xe, np.newaxis] * (color * opacity)[np.newaxis, np.newaxis, :]
return img
def setup_text_label(text, font='Calibri', fontsize=32, padding=6, glow_size=2.0, glow_coef=3.0, glow_exp=2.0, cache_size=100): # => (alpha, glow)
# Lookup from cache.
key = (text, font, fontsize, padding, glow_size, glow_coef, glow_exp)
if key in _text_label_cache:
value = _text_label_cache[key]
del _text_label_cache[key] # LRU policy
_text_label_cache[key] = value
return value
# Limit cache size.
while len(_text_label_cache) >= cache_size:
_text_label_cache.popitem(last=False)
# Render text.
import moviepy.editor # pip install moviepy
alpha = moviepy.editor.TextClip(text, font=font, fontsize=fontsize).mask.make_frame(0)
alpha = np.pad(alpha, padding, mode='constant', constant_values=0.0)
glow = scipy.ndimage.gaussian_filter(alpha, glow_size)
glow = 1.0 - np.maximum(1.0 - glow * glow_coef, 0.0) ** glow_exp
# Add to cache.
value = (alpha, glow)
_text_label_cache[key] = value
return value
#----------------------------------------------------------------------------
|