File size: 7,998 Bytes
8c212a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "synthesize_demo",
"provenance": [],
"collapsed_sections": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "qJDJLE3v0HNr"
},
"source": [
"# Fetch Codebase and Install Environment"
]
},
{
"cell_type": "code",
"metadata": {
"id": "qy1nwGJV5JuG"
},
"source": [
"import os\n",
"os.chdir('/content')\n",
"CODE_DIR = 'GenForce'\n",
"!git clone https://github.com/genforce/genforce.git $CODE_DIR\n",
"os.chdir(f'./{CODE_DIR}')\n",
"!pip install -r requirements.txt > installation_output.txt"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "qh5DFyyg0Ntm"
},
"source": [
"# Define Utility Functions"
]
},
{
"cell_type": "code",
"metadata": {
"id": "qcSdJW5V0M-8"
},
"source": [
"import os\n",
"import subprocess\n",
"import io\n",
"import IPython.display\n",
"import numpy as np\n",
"import PIL.Image\n",
"\n",
"import torch\n",
"\n",
"from models import MODEL_ZOO\n",
"from models import build_generator\n",
"from utils.visualizer import fuse_images\n",
"\n",
"\n",
"def postprocess(images):\n",
" \"\"\"Post-processes images from `torch.Tensor` to `numpy.ndarray`.\"\"\"\n",
" images = images.detach().cpu().numpy()\n",
" images = (images + 1) * 255 / 2\n",
" images = np.clip(images + 0.5, 0, 255).astype(np.uint8)\n",
" images = images.transpose(0, 2, 3, 1)\n",
" return images\n",
"\n",
"\n",
"def build(model_name):\n",
" \"\"\"Builds generator and load pre-trained weights.\"\"\"\n",
" model_config = MODEL_ZOO[model_name].copy()\n",
" url = model_config.pop('url') # URL to download model if needed.\n",
"\n",
" # Build generator.\n",
" print(f'Building generator for model `{model_name}` ...')\n",
" generator = build_generator(**model_config)\n",
" print(f'Finish building generator.')\n",
"\n",
" # Load pre-trained weights.\n",
" os.makedirs('checkpoints', exist_ok=True)\n",
" checkpoint_path = os.path.join('checkpoints', model_name + '.pth')\n",
" print(f'Loading checkpoint from `{checkpoint_path}` ...')\n",
" if not os.path.exists(checkpoint_path):\n",
" print(f' Downloading checkpoint from `{url}` ...')\n",
" subprocess.call(['wget', '--quiet', '-O', checkpoint_path, url])\n",
" print(f' Finish downloading checkpoint.')\n",
" checkpoint = torch.load(checkpoint_path, map_location='cpu')\n",
" if 'generator_smooth' in checkpoint:\n",
" generator.load_state_dict(checkpoint['generator_smooth'])\n",
" else:\n",
" generator.load_state_dict(checkpoint['generator'])\n",
" generator = generator.cuda()\n",
" generator.eval()\n",
" print(f'Finish loading checkpoint.')\n",
" return generator\n",
"\n",
"\n",
"def synthesize(generator, num, synthesis_kwargs=None, batch_size=1, seed=0):\n",
" \"\"\"Synthesize images.\"\"\"\n",
" assert num > 0 and batch_size > 0\n",
" synthesis_kwargs = synthesis_kwargs or dict()\n",
"\n",
" # Set random seed.\n",
" np.random.seed(seed)\n",
" torch.manual_seed(seed)\n",
"\n",
" # Sample and synthesize.\n",
" outputs = []\n",
" for idx in range(0, num, batch_size):\n",
" batch = min(batch_size, num - idx)\n",
" code = torch.randn(batch, generator.z_space_dim).cuda()\n",
" with torch.no_grad():\n",
" images = generator(code, **synthesis_kwargs)['image']\n",
" images = postprocess(images)\n",
" outputs.append(images)\n",
" return np.concatenate(outputs, axis=0)\n",
"\n",
"\n",
"def imshow(images, viz_size=256, col=0, spacing=0):\n",
" \"\"\"Shows images in one figure.\"\"\"\n",
" fused_image = fuse_images(\n",
" images,\n",
" col=col,\n",
" image_size=viz_size,\n",
" row_spacing=spacing,\n",
" col_spacing=spacing\n",
" )\n",
" fused_image = np.asarray(fused_image, dtype=np.uint8)\n",
" data = io.BytesIO()\n",
" PIL.Image.fromarray(fused_image).save(data, 'jpeg')\n",
" im_data = data.getvalue()\n",
" disp = IPython.display.display(IPython.display.Image(im_data))\n",
" return disp"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "rIrseINa879H"
},
"source": [
"# Select a Model"
]
},
{
"cell_type": "code",
"metadata": {
"id": "RyoJmv-PtZo_"
},
"source": [
"#@title { display-mode: \"form\", run: \"auto\" }\n",
"\n",
"model_name = \"stylegan_diningroom256\" #@param ['pggan_celebahq1024', 'pggan_bedroom256', 'pggan_livingroom256', 'pggan_diningroom256', 'pggan_kitchen256', 'pggan_churchoutdoor256', 'pggan_tower256', 'pggan_bridge256', 'pggan_restaurant256', 'pggan_classroom256', 'pggan_conferenceroom256', 'pggan_person256', 'pggan_cat256', 'pggan_dog256', 'pggan_bird256', 'pggan_horse256', 'pggan_sheep256', 'pggan_cow256', 'pggan_car256', 'pggan_bicycle256', 'pggan_motorbike256', 'pggan_bus256', 'pggan_train256', 'pggan_boat256', 'pggan_airplane256', 'pggan_bottle256', 'pggan_chair256', 'pggan_pottedplant256', 'pggan_tvmonitor256', 'pggan_diningtable256', 'pggan_sofa256', 'stylegan_ffhq1024', 'stylegan_celebahq1024', 'stylegan_bedroom256', 'stylegan_cat256', 'stylegan_car512', 'stylegan_celeba_partial256', 'stylegan_ffhq256', 'stylegan_ffhq512', 'stylegan_livingroom256', 'stylegan_diningroom256', 'stylegan_kitchen256', 'stylegan_apartment256', 'stylegan_church256', 'stylegan_tower256', 'stylegan_bridge256', 'stylegan_restaurant256', 'stylegan_classroom256', 'stylegan_conferenceroom256', 'stylegan_animeface512', 'stylegan_animeportrait512', 'stylegan_artface512', 'stylegan2_ffhq1024', 'stylegan2_church256', 'stylegan2_cat256', 'stylegan2_horse256', 'stylegan2_car512']\n",
"\n",
"generator = build(model_name)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "RsGPMc5E8_jn"
},
"source": [
"# Synthesize"
]
},
{
"cell_type": "code",
"metadata": {
"id": "jPkIXKxp4-7L"
},
"source": [
"#@title { display-mode: \"form\", run: \"auto\" }\n",
"\n",
"num_samples = 8 #@param {type:\"slider\", min:1, max:20, step:1}\n",
"noise_seed = 488 #@param {type:\"slider\", min:0, max:1000, step:1}\n",
"truncation = 1 #@param {type:\"slider\", min:0.0, max:1, step:0.02}\n",
"truncation_layers = 3 #@param {type:\"slider\", min:0, max:18, step:1}\n",
"randomize_noise = 'false' #@param ['true', 'false']\n",
"\n",
"synthesis_kwargs = dict(trunc_psi=1 - truncation,\n",
" trunc_layers=truncation_layers,\n",
" randomize_noise=randomize_noise)\n",
"images = synthesize(generator, num_samples, synthesis_kwargs, seed=noise_seed)\n",
"imshow(images)"
],
"execution_count": null,
"outputs": []
}
]
} |