File size: 7,998 Bytes
8c212a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "name": "synthesize_demo",
      "provenance": [],
      "collapsed_sections": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "qJDJLE3v0HNr"
      },
      "source": [
        "# Fetch Codebase and Install Environment"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "qy1nwGJV5JuG"
      },
      "source": [
        "import os\n",
        "os.chdir('/content')\n",
        "CODE_DIR = 'GenForce'\n",
        "!git clone https://github.com/genforce/genforce.git $CODE_DIR\n",
        "os.chdir(f'./{CODE_DIR}')\n",
        "!pip install -r requirements.txt > installation_output.txt"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "qh5DFyyg0Ntm"
      },
      "source": [
        "# Define Utility Functions"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "qcSdJW5V0M-8"
      },
      "source": [
        "import os\n",
        "import subprocess\n",
        "import io\n",
        "import IPython.display\n",
        "import numpy as np\n",
        "import PIL.Image\n",
        "\n",
        "import torch\n",
        "\n",
        "from models import MODEL_ZOO\n",
        "from models import build_generator\n",
        "from utils.visualizer import fuse_images\n",
        "\n",
        "\n",
        "def postprocess(images):\n",
        "  \"\"\"Post-processes images from `torch.Tensor` to `numpy.ndarray`.\"\"\"\n",
        "  images = images.detach().cpu().numpy()\n",
        "  images = (images + 1) * 255 / 2\n",
        "  images = np.clip(images + 0.5, 0, 255).astype(np.uint8)\n",
        "  images = images.transpose(0, 2, 3, 1)\n",
        "  return images\n",
        "\n",
        "\n",
        "def build(model_name):\n",
        "  \"\"\"Builds generator and load pre-trained weights.\"\"\"\n",
        "  model_config = MODEL_ZOO[model_name].copy()\n",
        "  url = model_config.pop('url')  # URL to download model if needed.\n",
        "\n",
        "  # Build generator.\n",
        "  print(f'Building generator for model `{model_name}` ...')\n",
        "  generator = build_generator(**model_config)\n",
        "  print(f'Finish building generator.')\n",
        "\n",
        "  # Load pre-trained weights.\n",
        "  os.makedirs('checkpoints', exist_ok=True)\n",
        "  checkpoint_path = os.path.join('checkpoints', model_name + '.pth')\n",
        "  print(f'Loading checkpoint from `{checkpoint_path}` ...')\n",
        "  if not os.path.exists(checkpoint_path):\n",
        "    print(f'  Downloading checkpoint from `{url}` ...')\n",
        "    subprocess.call(['wget', '--quiet', '-O', checkpoint_path, url])\n",
        "    print(f'  Finish downloading checkpoint.')\n",
        "  checkpoint = torch.load(checkpoint_path, map_location='cpu')\n",
        "  if 'generator_smooth' in checkpoint:\n",
        "    generator.load_state_dict(checkpoint['generator_smooth'])\n",
        "  else:\n",
        "    generator.load_state_dict(checkpoint['generator'])\n",
        "  generator = generator.cuda()\n",
        "  generator.eval()\n",
        "  print(f'Finish loading checkpoint.')\n",
        "  return generator\n",
        "\n",
        "\n",
        "def synthesize(generator, num, synthesis_kwargs=None, batch_size=1, seed=0):\n",
        "  \"\"\"Synthesize images.\"\"\"\n",
        "  assert num > 0 and batch_size > 0\n",
        "  synthesis_kwargs = synthesis_kwargs or dict()\n",
        "\n",
        "  # Set random seed.\n",
        "  np.random.seed(seed)\n",
        "  torch.manual_seed(seed)\n",
        "\n",
        "  # Sample and synthesize.\n",
        "  outputs = []\n",
        "  for idx in range(0, num, batch_size):\n",
        "    batch = min(batch_size, num - idx)\n",
        "    code = torch.randn(batch, generator.z_space_dim).cuda()\n",
        "    with torch.no_grad():\n",
        "      images = generator(code, **synthesis_kwargs)['image']\n",
        "      images = postprocess(images)\n",
        "    outputs.append(images)\n",
        "  return np.concatenate(outputs, axis=0)\n",
        "\n",
        "\n",
        "def imshow(images, viz_size=256, col=0, spacing=0):\n",
        "  \"\"\"Shows images in one figure.\"\"\"\n",
        "  fused_image = fuse_images(\n",
        "    images,\n",
        "    col=col,\n",
        "    image_size=viz_size,\n",
        "    row_spacing=spacing,\n",
        "    col_spacing=spacing\n",
        "  )\n",
        "  fused_image = np.asarray(fused_image, dtype=np.uint8)\n",
        "  data = io.BytesIO()\n",
        "  PIL.Image.fromarray(fused_image).save(data, 'jpeg')\n",
        "  im_data = data.getvalue()\n",
        "  disp = IPython.display.display(IPython.display.Image(im_data))\n",
        "  return disp"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "rIrseINa879H"
      },
      "source": [
        "# Select a Model"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "RyoJmv-PtZo_"
      },
      "source": [
        "#@title { display-mode: \"form\", run: \"auto\" }\n",
        "\n",
        "model_name = \"stylegan_diningroom256\" #@param ['pggan_celebahq1024', 'pggan_bedroom256', 'pggan_livingroom256', 'pggan_diningroom256', 'pggan_kitchen256', 'pggan_churchoutdoor256', 'pggan_tower256', 'pggan_bridge256', 'pggan_restaurant256', 'pggan_classroom256', 'pggan_conferenceroom256', 'pggan_person256', 'pggan_cat256', 'pggan_dog256', 'pggan_bird256', 'pggan_horse256', 'pggan_sheep256', 'pggan_cow256', 'pggan_car256', 'pggan_bicycle256', 'pggan_motorbike256', 'pggan_bus256', 'pggan_train256', 'pggan_boat256', 'pggan_airplane256', 'pggan_bottle256', 'pggan_chair256', 'pggan_pottedplant256', 'pggan_tvmonitor256', 'pggan_diningtable256', 'pggan_sofa256', 'stylegan_ffhq1024', 'stylegan_celebahq1024', 'stylegan_bedroom256', 'stylegan_cat256', 'stylegan_car512', 'stylegan_celeba_partial256', 'stylegan_ffhq256', 'stylegan_ffhq512', 'stylegan_livingroom256', 'stylegan_diningroom256', 'stylegan_kitchen256', 'stylegan_apartment256', 'stylegan_church256', 'stylegan_tower256', 'stylegan_bridge256', 'stylegan_restaurant256', 'stylegan_classroom256', 'stylegan_conferenceroom256', 'stylegan_animeface512', 'stylegan_animeportrait512', 'stylegan_artface512', 'stylegan2_ffhq1024', 'stylegan2_church256', 'stylegan2_cat256', 'stylegan2_horse256', 'stylegan2_car512']\n",
        "\n",
        "generator = build(model_name)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "RsGPMc5E8_jn"
      },
      "source": [
        "# Synthesize"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "jPkIXKxp4-7L"
      },
      "source": [
        "#@title { display-mode: \"form\", run: \"auto\" }\n",
        "\n",
        "num_samples = 8 #@param {type:\"slider\", min:1, max:20, step:1}\n",
        "noise_seed = 488 #@param {type:\"slider\", min:0, max:1000, step:1}\n",
        "truncation = 1 #@param {type:\"slider\", min:0.0, max:1, step:0.02}\n",
        "truncation_layers = 3 #@param {type:\"slider\", min:0, max:18, step:1}\n",
        "randomize_noise = 'false' #@param ['true', 'false']\n",
        "\n",
        "synthesis_kwargs = dict(trunc_psi=1 - truncation,\n",
        "             trunc_layers=truncation_layers,\n",
        "             randomize_noise=randomize_noise)\n",
        "images = synthesize(generator, num_samples, synthesis_kwargs, seed=noise_seed)\n",
        "imshow(images)"
      ],
      "execution_count": null,
      "outputs": []
    }
  ]
}