File size: 10,858 Bytes
8c212a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b02a0ab
 
8c212a5
 
 
b02a0ab
 
 
 
 
 
8c212a5
b02a0ab
 
 
 
 
 
 
 
 
8c212a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import sys
import os
import os.path as osp
import json
import argparse
import numpy as np
import clip
import torch
import math
from scipy.stats import truncnorm
from PIL import Image, ImageDraw
from torchvision.transforms import ToPILImage
from .config import SEMANTIC_DIPOLES_CORPORA


def create_exp_dir(args):
    """Create output directory for current experiment under experiments/wip/ and save given the arguments (json) and
    the given command (bash script).

    Experiment's directory name format:
        ContraCLIP-<gan_type>(-{Z,W,W+})-K<num_latent_support_sets>-D<num_latent_support_dipoles>-css_beta_<css_beta>
            -eps<min_shift_magnitude>_<max_shift_magnitude>
            (-<nonlinear_css_beta-<css_beta>/linear/styleclip>)(-<contrastive_<temperature>/cossim>)-<max_iter>-<prompt>

        E.g.:
            ContraCLIP_stylegan2_ffhq1024-W+-K3-D128-eps0.1_0.2-nonlinear_beta-0.75-contrastive_1.0-10000-expressions3

    Args:
        args (argparse.Namespace): the namespace object returned by `parse_args()` for the current run

    """
    exp_dir = "ContraCLIP_{}".format(args.gan)
    if 'stylegan' in args.gan:
        exp_dir += '-{}'.format(args.stylegan_space)
    else:
        exp_dir += '-Z'
    exp_dir += "-K{}-D{}".format(len(SEMANTIC_DIPOLES_CORPORA[args.corpus]), args.num_latent_support_dipoles)
    exp_dir += "-lss_beta_{}".format(args.lss_beta)
    exp_dir += "-eps{}_{}".format(args.min_shift_magnitude, args.max_shift_magnitude)
    if args.styleclip:
        exp_dir += "-styleclip"
    elif args.linear:
        exp_dir += "-linear"
    else:
        exp_dir += "-nonlinear_css_beta_{}".format(args.css_beta)

    exp_dir += "-{}".format(args.loss)
    if args.loss == "contrastive":
        exp_dir += "_{}".format(args.temperature)
    exp_dir += "-{}".format(args.max_iter)
    exp_dir += "-{}".format(args.corpus)

    # Create output directory (wip)
    wip_dir = osp.join("experiments", "wip", exp_dir)
    os.makedirs(wip_dir, exist_ok=True)
    # Save args namespace object in json format
    with open(osp.join(wip_dir, 'args.json'), 'w') as args_json_file:
        json.dump(args.__dict__, args_json_file)

    # Save the given command in a bash script file
    with open(osp.join(wip_dir, 'command.sh'), 'w') as command_file:
        command_file.write('#!/usr/bin/bash\n')
        command_file.write(' '.join(sys.argv) + '\n')

    return exp_dir


class PromptFeatures:
    def __init__(self, prompt_corpus, clip_model):
        self.prompt_corpus = prompt_corpus
        # self.clip_model = clip_model.cpu()
        self.clip_model = clip_model
        self.num_prompts = len(self.prompt_corpus)
        self.prompt_features_dim = 512

    # def get_prompt_features(self):
    #     prompt_features = [
    #         self.clip_model.encode_text(clip.tokenize(self.prompt_corpus[t]).cpu()).unsqueeze(0) for t in
    #         range(len(self.prompt_corpus))
    #     ]
    #     return torch.cat(prompt_features, dim=0)
    def get_prompt_features(self):
            # Get the device of the CLIP model
            device = next(self.clip_model.parameters()).device

            # Move tokenized text to the same device as the model
            prompt_features = [
                self.clip_model.encode_text(clip.tokenize(self.prompt_corpus[t]).to(device)).unsqueeze(0)
                for t in range(len(self.prompt_corpus))
            ]
            return torch.cat(prompt_features, dim=0)


class TrainingStatTracker(object):
    def __init__(self):
        self.stat_tracker = {'loss': []}

    def update(self, loss):
        self.stat_tracker['loss'].append(float(loss))

    def get_means(self):
        stat_means = dict()
        for key, value in self.stat_tracker.items():
            stat_means.update({key: np.mean(value)})
        return stat_means

    def flush(self):
        for key in self.stat_tracker.keys():
            self.stat_tracker[key] = []


def sample_z(batch_size, dim_z, truncation=None):
    """Sample a random latent code from multi-variate standard Gaussian distribution with/without truncation.

    Args:
        batch_size (int)   : batch size (number of latent codes)
        dim_z (int)        : latent space dimensionality
        truncation (float) : truncation parameter

    Returns:
        z (torch.Tensor)   : batch of latent codes
    """
    if truncation is None or truncation == 1.0:
        return torch.randn(batch_size, dim_z)
    else:
        return torch.from_numpy(truncnorm.rvs(-truncation, truncation, size=(batch_size, dim_z))).to(torch.float)


def tensor2image(tensor, adaptive=False):
    tensor = tensor.squeeze(dim=0)
    if adaptive:
        tensor = (tensor - tensor.min()) / (tensor.max() - tensor.min())
        return ToPILImage()((255 * tensor.cpu().detach()).to(torch.uint8))
    else:
        tensor = (tensor + 1) / 2
        tensor.clamp(0, 1)
        return ToPILImage()((255 * tensor.cpu().detach()).to(torch.uint8))


def update_progress(msg, total, progress):
    bar_length, status = 20, ""
    progress = float(progress) / float(total)
    if progress >= 1.:
        progress, status = 1, "\r\n"
    block = int(round(bar_length * progress))
    block_symbol = u"\u2588"
    empty_symbol = u"\u2591"
    text = "\r{}{} {:.0f}% {}".format(msg, block_symbol * block + empty_symbol * (bar_length - block),
                                      round(progress * 100, 0), status)
    sys.stdout.write(text)
    sys.stdout.flush()


def update_stdout(num_lines):
    """Update stdout by moving cursor up and erasing line for given number of lines.

    Args:
        num_lines (int): number of lines

    """
    cursor_up = '\x1b[1A'
    erase_line = '\x1b[1A'
    for _ in range(num_lines):
        print(cursor_up + erase_line)


def sec2dhms(t):
    """Convert time into days, hours, minutes, and seconds string format.

    Args:
        t (float): time in seconds

    Returns (string):
        "<days> days, <hours> hours, <minutes> minutes, and <seconds> seconds"

    """
    day = t // (24 * 3600)
    t = t % (24 * 3600)
    hour = t // 3600
    t %= 3600
    minutes = t // 60
    t %= 60
    seconds = t
    return "%02d days, %02d hours, %02d minutes, and %02d seconds" % (day, hour, minutes, seconds)


def get_wh(img_paths):
    """Get width and height of images in given list of paths. Images are expected to have the same resolution.

    Args:
        img_paths (list): list of image paths

    Returns:
        width (int)  : the common images width
        height (int) : the common images height

    """
    img_widths = []
    img_heights = []
    for img in img_paths:
        img_ = Image.open(img)
        img_widths.append(img_.width)
        img_heights.append(img_.height)

    if len(set(img_widths)) == len(set(img_heights)) == 1:
        return img_widths[0], img_heights[1]
    else:
        raise ValueError("Inconsistent image resolutions in {}".format(img_paths))


def create_summarizing_gif(imgs_root, gif_filename, num_imgs=None, gif_size=None, gif_fps=30, gap=15, progress_bar_h=15,
                           progress_bar_color=(252, 186, 3)):
    """Create a summarizing GIF image given an images root directory (images generated across a certain latent path) and
    the number of images to appear as a static sequence. The resolution of the resulting GIF image will be
    ((num_imgs + 1) * gif_size, gif_size). That is, a static sequence of `num_imgs` images will be depicted in front of
    the animated GIF image (the latter will use all the available images in `imgs_root`).

    Args:
        imgs_root (str)            : directory of images (generated across a certain path)
        gif_filename (str)         : filename of the resulting GIF image
        num_imgs (int)             : number of images that will be used to build the static sequence before the
                                     animated part of the GIF
        gif_size (int)             : height of the GIF image (its width will be equal to (num_imgs + 1) * gif_size)
        gif_fps (int)              : GIF frames per second
        gap (int)                  : a gap between the static sequence and the animated path of the GIF
        progress_bar_h (int)       : height of the progress bar depicted to the bottom of the animated part of the GIF
                                     image. If a non-positive number is given, progress bar will be disabled.
        progress_bar_color (tuple) : color of the progress bar

    """
    # Check if given images root directory exists
    if not osp.isdir(imgs_root):
        raise NotADirectoryError("Invalid directory: {}".format(imgs_root))

    # Get all images under given root directory
    path_images = [osp.join(imgs_root, dI) for dI in os.listdir(imgs_root) if osp.isfile(osp.join(imgs_root, dI))]
    path_images.sort()

    # Set number of images to appear in the static sequence of the GIF
    num_images = len(path_images)
    if num_imgs is None:
        num_imgs = num_images
    elif num_imgs > num_images:
        num_imgs = num_images

    # Get paths of static images
    static_imgs = []
    for i in range(0, len(path_images), math.ceil(len(path_images) / num_imgs)):
        static_imgs.append(osp.join(imgs_root, '{:06}.jpg'.format(i)))
    num_imgs = len(static_imgs)

    # Get GIF image resolution
    if gif_size is not None:
        gif_w = gif_h = gif_size
    else:
        gif_w, gif_h = get_wh(static_imgs)

    # Create PIL static image
    static_img_pil = Image.new('RGB', size=(len(static_imgs) * gif_w, gif_h))
    for i in range(len(static_imgs)):
        static_img_pil.paste(Image.open(static_imgs[i]).resize((gif_w, gif_h)), (i * gif_w, 0))

    # Create PIL GIF frames
    gif_frames = []
    for i in range(len(path_images)):
        # Create new PIL frame
        gif_frame_pil = Image.new('RGB', size=((num_imgs + 1) * gif_w + gap, gif_h), color=(255, 255, 255))

        # Paste static image
        gif_frame_pil.paste(static_img_pil, (0, 0))

        # Paste current image
        gif_frame_pil.paste(Image.open(path_images[i]).resize((gif_w, gif_h)), (num_imgs * gif_w + gap, 0))

        # Draw progress bar
        if progress_bar_h > 0:
            gif_frame_pil_drawing = ImageDraw.Draw(gif_frame_pil)
            progress = (i / len(path_images)) * gif_w
            gif_frame_pil_drawing.rectangle(xy=[num_imgs * gif_w + gap, gif_h - progress_bar_h,
                                                num_imgs * gif_w + gap + progress, gif_h],
                                            fill=progress_bar_color)

        # Append to GIF frames list
        gif_frames.append(gif_frame_pil)

    # Save GIF file
    gif_frames[0].save(
        fp=gif_filename,
        append_images=gif_frames[1:],
        save_all=True,
        optimize=False,
        loop=0,
        duration=1000 // gif_fps)