Spaces:
Sleeping
Sleeping
| import argparse | |
| import contextlib | |
| import json | |
| import os | |
| import platform | |
| import re | |
| import subprocess | |
| import sys | |
| import time | |
| import warnings | |
| from pathlib import Path | |
| import pandas as pd | |
| import torch | |
| from torch.utils.mobile_optimizer import optimize_for_mobile | |
| FILE = Path(__file__).resolve() | |
| ROOT = FILE.parents[0] # YOLO root directory | |
| if str(ROOT) not in sys.path: | |
| sys.path.append(str(ROOT)) # add ROOT to PATH | |
| if platform.system() != 'Windows': | |
| ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative | |
| from models.experimental import attempt_load, End2End | |
| from models.yolo import ClassificationModel, Detect, DDetect, DualDetect, DualDDetect, DetectionModel, SegmentationModel | |
| from utils.dataloaders import LoadImages | |
| from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version, | |
| check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save) | |
| from utils.torch_utils import select_device, smart_inference_mode | |
| MACOS = platform.system() == 'Darwin' # macOS environment | |
| def export_formats(): | |
| # YOLO export formats | |
| x = [ | |
| ['PyTorch', '-', '.pt', True, True], | |
| ['TorchScript', 'torchscript', '.torchscript', True, True], | |
| ['ONNX', 'onnx', '.onnx', True, True], | |
| ['ONNX END2END', 'onnx_end2end', '_end2end.onnx', True, True], | |
| ['OpenVINO', 'openvino', '_openvino_model', True, False], | |
| ['TensorRT', 'engine', '.engine', False, True], | |
| ['CoreML', 'coreml', '.mlmodel', True, False], | |
| ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True], | |
| ['TensorFlow GraphDef', 'pb', '.pb', True, True], | |
| ['TensorFlow Lite', 'tflite', '.tflite', True, False], | |
| ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False], | |
| ['TensorFlow.js', 'tfjs', '_web_model', False, False], | |
| ['PaddlePaddle', 'paddle', '_paddle_model', True, True],] | |
| return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU']) | |
| def try_export(inner_func): | |
| # YOLO export decorator, i..e @try_export | |
| inner_args = get_default_args(inner_func) | |
| def outer_func(*args, **kwargs): | |
| prefix = inner_args['prefix'] | |
| try: | |
| with Profile() as dt: | |
| f, model = inner_func(*args, **kwargs) | |
| LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)') | |
| return f, model | |
| except Exception as e: | |
| LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}') | |
| return None, None | |
| return outer_func | |
| def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')): | |
| # YOLO TorchScript model export | |
| LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...') | |
| f = file.with_suffix('.torchscript') | |
| ts = torch.jit.trace(model, im, strict=False) | |
| d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names} | |
| extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap() | |
| if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html | |
| optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files) | |
| else: | |
| ts.save(str(f), _extra_files=extra_files) | |
| return f, None | |
| def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')): | |
| # YOLO ONNX export | |
| check_requirements('onnx') | |
| import onnx | |
| LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...') | |
| f = file.with_suffix('.onnx') | |
| output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0'] | |
| if dynamic: | |
| dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640) | |
| if isinstance(model, SegmentationModel): | |
| dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85) | |
| dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160) | |
| elif isinstance(model, DetectionModel): | |
| dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85) | |
| torch.onnx.export( | |
| model.cpu() if dynamic else model, # --dynamic only compatible with cpu | |
| im.cpu() if dynamic else im, | |
| f, | |
| verbose=False, | |
| opset_version=opset, | |
| do_constant_folding=True, | |
| input_names=['images'], | |
| output_names=output_names, | |
| dynamic_axes=dynamic or None) | |
| # Checks | |
| model_onnx = onnx.load(f) # load onnx model | |
| onnx.checker.check_model(model_onnx) # check onnx model | |
| # Metadata | |
| d = {'stride': int(max(model.stride)), 'names': model.names} | |
| for k, v in d.items(): | |
| meta = model_onnx.metadata_props.add() | |
| meta.key, meta.value = k, str(v) | |
| onnx.save(model_onnx, f) | |
| # Simplify | |
| if simplify: | |
| try: | |
| cuda = torch.cuda.is_available() | |
| check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1')) | |
| import onnxsim | |
| LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') | |
| model_onnx, check = onnxsim.simplify(model_onnx) | |
| assert check, 'assert check failed' | |
| onnx.save(model_onnx, f) | |
| except Exception as e: | |
| LOGGER.info(f'{prefix} simplifier failure: {e}') | |
| return f, model_onnx | |
| def export_onnx_end2end(model, im, file, simplify, topk_all, iou_thres, conf_thres, device, labels, prefix=colorstr('ONNX END2END:')): | |
| # YOLO ONNX export | |
| check_requirements('onnx') | |
| import onnx | |
| LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...') | |
| f = os.path.splitext(file)[0] + "-end2end.onnx" | |
| batch_size = 'batch' | |
| dynamic_axes = {'images': {0 : 'batch', 2: 'height', 3:'width'}, } # variable length axes | |
| output_axes = { | |
| 'num_dets': {0: 'batch'}, | |
| 'det_boxes': {0: 'batch'}, | |
| 'det_scores': {0: 'batch'}, | |
| 'det_classes': {0: 'batch'}, | |
| } | |
| dynamic_axes.update(output_axes) | |
| model = End2End(model, topk_all, iou_thres, conf_thres, None ,device, labels) | |
| output_names = ['num_dets', 'det_boxes', 'det_scores', 'det_classes'] | |
| shapes = [ batch_size, 1, batch_size, topk_all, 4, | |
| batch_size, topk_all, batch_size, topk_all] | |
| torch.onnx.export(model, | |
| im, | |
| f, | |
| verbose=False, | |
| export_params=True, # store the trained parameter weights inside the model file | |
| opset_version=12, | |
| do_constant_folding=True, # whether to execute constant folding for optimization | |
| input_names=['images'], | |
| output_names=output_names, | |
| dynamic_axes=dynamic_axes) | |
| # Checks | |
| model_onnx = onnx.load(f) # load onnx model | |
| onnx.checker.check_model(model_onnx) # check onnx model | |
| for i in model_onnx.graph.output: | |
| for j in i.type.tensor_type.shape.dim: | |
| j.dim_param = str(shapes.pop(0)) | |
| if simplify: | |
| try: | |
| import onnxsim | |
| print('\nStarting to simplify ONNX...') | |
| model_onnx, check = onnxsim.simplify(model_onnx) | |
| assert check, 'assert check failed' | |
| except Exception as e: | |
| print(f'Simplifier failure: {e}') | |
| # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model | |
| onnx.save(model_onnx,f) | |
| print('ONNX export success, saved as %s' % f) | |
| return f, model_onnx | |
| def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')): | |
| # YOLO OpenVINO export | |
| check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/ | |
| import openvino.inference_engine as ie | |
| LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...') | |
| f = str(file).replace('.pt', f'_openvino_model{os.sep}') | |
| #cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}" | |
| #cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} {"--compress_to_fp16" if half else ""}" | |
| half_arg = "--compress_to_fp16" if half else "" | |
| cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} {half_arg}" | |
| subprocess.run(cmd.split(), check=True, env=os.environ) # export | |
| yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml | |
| return f, None | |
| def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')): | |
| # YOLO Paddle export | |
| check_requirements(('paddlepaddle', 'x2paddle')) | |
| import x2paddle | |
| from x2paddle.convert import pytorch2paddle | |
| LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...') | |
| f = str(file).replace('.pt', f'_paddle_model{os.sep}') | |
| pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) # export | |
| yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml | |
| return f, None | |
| def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')): | |
| # YOLO CoreML export | |
| check_requirements('coremltools') | |
| import coremltools as ct | |
| LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...') | |
| f = file.with_suffix('.mlmodel') | |
| ts = torch.jit.trace(model, im, strict=False) # TorchScript model | |
| ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])]) | |
| bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None) | |
| if bits < 32: | |
| if MACOS: # quantization only supported on macOS | |
| with warnings.catch_warnings(): | |
| warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning | |
| ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode) | |
| else: | |
| print(f'{prefix} quantization only supported on macOS, skipping...') | |
| ct_model.save(f) | |
| return f, ct_model | |
| def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')): | |
| # YOLO TensorRT export https://developer.nvidia.com/tensorrt | |
| assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`' | |
| try: | |
| import tensorrt as trt | |
| except Exception: | |
| if platform.system() == 'Linux': | |
| check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com') | |
| import tensorrt as trt | |
| if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012 | |
| grid = model.model[-1].anchor_grid | |
| model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid] | |
| export_onnx(model, im, file, 12, dynamic, simplify) # opset 12 | |
| model.model[-1].anchor_grid = grid | |
| else: # TensorRT >= 8 | |
| check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0 | |
| export_onnx(model, im, file, 12, dynamic, simplify) # opset 12 | |
| onnx = file.with_suffix('.onnx') | |
| LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...') | |
| assert onnx.exists(), f'failed to export ONNX file: {onnx}' | |
| f = file.with_suffix('.engine') # TensorRT engine file | |
| logger = trt.Logger(trt.Logger.INFO) | |
| if verbose: | |
| logger.min_severity = trt.Logger.Severity.VERBOSE | |
| builder = trt.Builder(logger) | |
| config = builder.create_builder_config() | |
| config.max_workspace_size = workspace * 1 << 30 | |
| # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice | |
| flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) | |
| network = builder.create_network(flag) | |
| parser = trt.OnnxParser(network, logger) | |
| if not parser.parse_from_file(str(onnx)): | |
| raise RuntimeError(f'failed to load ONNX file: {onnx}') | |
| inputs = [network.get_input(i) for i in range(network.num_inputs)] | |
| outputs = [network.get_output(i) for i in range(network.num_outputs)] | |
| for inp in inputs: | |
| LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}') | |
| for out in outputs: | |
| LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}') | |
| if dynamic: | |
| if im.shape[0] <= 1: | |
| LOGGER.warning(f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument") | |
| profile = builder.create_optimization_profile() | |
| for inp in inputs: | |
| profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape) | |
| config.add_optimization_profile(profile) | |
| LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}') | |
| if builder.platform_has_fast_fp16 and half: | |
| config.set_flag(trt.BuilderFlag.FP16) | |
| with builder.build_engine(network, config) as engine, open(f, 'wb') as t: | |
| t.write(engine.serialize()) | |
| return f, None | |
| def export_saved_model(model, | |
| im, | |
| file, | |
| dynamic, | |
| tf_nms=False, | |
| agnostic_nms=False, | |
| topk_per_class=100, | |
| topk_all=100, | |
| iou_thres=0.45, | |
| conf_thres=0.25, | |
| keras=False, | |
| prefix=colorstr('TensorFlow SavedModel:')): | |
| # YOLO TensorFlow SavedModel export | |
| try: | |
| import tensorflow as tf | |
| except Exception: | |
| check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}") | |
| import tensorflow as tf | |
| from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 | |
| from models.tf import TFModel | |
| LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') | |
| f = str(file).replace('.pt', '_saved_model') | |
| batch_size, ch, *imgsz = list(im.shape) # BCHW | |
| tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) | |
| im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow | |
| _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) | |
| inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size) | |
| outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) | |
| keras_model = tf.keras.Model(inputs=inputs, outputs=outputs) | |
| keras_model.trainable = False | |
| keras_model.summary() | |
| if keras: | |
| keras_model.save(f, save_format='tf') | |
| else: | |
| spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype) | |
| m = tf.function(lambda x: keras_model(x)) # full model | |
| m = m.get_concrete_function(spec) | |
| frozen_func = convert_variables_to_constants_v2(m) | |
| tfm = tf.Module() | |
| tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec]) | |
| tfm.__call__(im) | |
| tf.saved_model.save(tfm, | |
| f, | |
| options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version( | |
| tf.__version__, '2.6') else tf.saved_model.SaveOptions()) | |
| return f, keras_model | |
| def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')): | |
| # YOLO TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow | |
| import tensorflow as tf | |
| from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 | |
| LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') | |
| f = file.with_suffix('.pb') | |
| m = tf.function(lambda x: keras_model(x)) # full model | |
| m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)) | |
| frozen_func = convert_variables_to_constants_v2(m) | |
| frozen_func.graph.as_graph_def() | |
| tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False) | |
| return f, None | |
| def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')): | |
| # YOLOv5 TensorFlow Lite export | |
| import tensorflow as tf | |
| LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') | |
| batch_size, ch, *imgsz = list(im.shape) # BCHW | |
| f = str(file).replace('.pt', '-fp16.tflite') | |
| converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) | |
| converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] | |
| converter.target_spec.supported_types = [tf.float16] | |
| converter.optimizations = [tf.lite.Optimize.DEFAULT] | |
| if int8: | |
| from models.tf import representative_dataset_gen | |
| dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False) | |
| converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100) | |
| converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] | |
| converter.target_spec.supported_types = [] | |
| converter.inference_input_type = tf.uint8 # or tf.int8 | |
| converter.inference_output_type = tf.uint8 # or tf.int8 | |
| converter.experimental_new_quantizer = True | |
| f = str(file).replace('.pt', '-int8.tflite') | |
| if nms or agnostic_nms: | |
| converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS) | |
| tflite_model = converter.convert() | |
| open(f, "wb").write(tflite_model) | |
| return f, None | |
| def export_edgetpu(file, prefix=colorstr('Edge TPU:')): | |
| # YOLO Edge TPU export https://coral.ai/docs/edgetpu/models-intro/ | |
| cmd = 'edgetpu_compiler --version' | |
| help_url = 'https://coral.ai/docs/edgetpu/compiler/' | |
| assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}' | |
| if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0: | |
| LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}') | |
| sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system | |
| for c in ( | |
| 'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -', | |
| 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list', | |
| 'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'): | |
| subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True) | |
| ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1] | |
| LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...') | |
| f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model | |
| f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model | |
| cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}" | |
| subprocess.run(cmd.split(), check=True) | |
| return f, None | |
| def export_tfjs(file, prefix=colorstr('TensorFlow.js:')): | |
| # YOLO TensorFlow.js export | |
| check_requirements('tensorflowjs') | |
| import tensorflowjs as tfjs | |
| LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...') | |
| f = str(file).replace('.pt', '_web_model') # js dir | |
| f_pb = file.with_suffix('.pb') # *.pb path | |
| f_json = f'{f}/model.json' # *.json path | |
| cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \ | |
| f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}' | |
| subprocess.run(cmd.split()) | |
| json = Path(f_json).read_text() | |
| with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order | |
| subst = re.sub( | |
| r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' | |
| r'"Identity.?.?": {"name": "Identity.?.?"}, ' | |
| r'"Identity.?.?": {"name": "Identity.?.?"}, ' | |
| r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, ' | |
| r'"Identity_1": {"name": "Identity_1"}, ' | |
| r'"Identity_2": {"name": "Identity_2"}, ' | |
| r'"Identity_3": {"name": "Identity_3"}}}', json) | |
| j.write(subst) | |
| return f, None | |
| def add_tflite_metadata(file, metadata, num_outputs): | |
| # Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata | |
| with contextlib.suppress(ImportError): | |
| # check_requirements('tflite_support') | |
| from tflite_support import flatbuffers | |
| from tflite_support import metadata as _metadata | |
| from tflite_support import metadata_schema_py_generated as _metadata_fb | |
| tmp_file = Path('/tmp/meta.txt') | |
| with open(tmp_file, 'w') as meta_f: | |
| meta_f.write(str(metadata)) | |
| model_meta = _metadata_fb.ModelMetadataT() | |
| label_file = _metadata_fb.AssociatedFileT() | |
| label_file.name = tmp_file.name | |
| model_meta.associatedFiles = [label_file] | |
| subgraph = _metadata_fb.SubGraphMetadataT() | |
| subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()] | |
| subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs | |
| model_meta.subgraphMetadata = [subgraph] | |
| b = flatbuffers.Builder(0) | |
| b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER) | |
| metadata_buf = b.Output() | |
| populator = _metadata.MetadataPopulator.with_model_file(file) | |
| populator.load_metadata_buffer(metadata_buf) | |
| populator.load_associated_files([str(tmp_file)]) | |
| populator.populate() | |
| tmp_file.unlink() | |
| def run( | |
| data=ROOT / 'data/coco.yaml', # 'dataset.yaml path' | |
| weights=ROOT / 'yolo.pt', # weights path | |
| imgsz=(640, 640), # image (height, width) | |
| batch_size=1, # batch size | |
| device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
| include=('torchscript', 'onnx'), # include formats | |
| half=False, # FP16 half-precision export | |
| inplace=False, # set YOLO Detect() inplace=True | |
| keras=False, # use Keras | |
| optimize=False, # TorchScript: optimize for mobile | |
| int8=False, # CoreML/TF INT8 quantization | |
| dynamic=False, # ONNX/TF/TensorRT: dynamic axes | |
| simplify=False, # ONNX: simplify model | |
| opset=12, # ONNX: opset version | |
| verbose=False, # TensorRT: verbose log | |
| workspace=4, # TensorRT: workspace size (GB) | |
| nms=False, # TF: add NMS to model | |
| agnostic_nms=False, # TF: add agnostic NMS to model | |
| topk_per_class=100, # TF.js NMS: topk per class to keep | |
| topk_all=100, # TF.js NMS: topk for all classes to keep | |
| iou_thres=0.45, # TF.js NMS: IoU threshold | |
| conf_thres=0.25, # TF.js NMS: confidence threshold | |
| ): | |
| t = time.time() | |
| include = [x.lower() for x in include] # to lowercase | |
| fmts = tuple(export_formats()['Argument'][1:]) # --include arguments | |
| flags = [x in include for x in fmts] | |
| assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}' | |
| jit, onnx, onnx_end2end, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans | |
| file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights | |
| # Load PyTorch model | |
| device = select_device(device) | |
| if half: | |
| assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0' | |
| assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both' | |
| model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model | |
| # Checks | |
| imgsz *= 2 if len(imgsz) == 1 else 1 # expand | |
| if optimize: | |
| assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu' | |
| # Input | |
| gs = int(max(model.stride)) # grid size (max stride) | |
| imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples | |
| im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection | |
| # Update model | |
| model.eval() | |
| for k, m in model.named_modules(): | |
| if isinstance(m, (Detect, DDetect, DualDetect, DualDDetect)): | |
| m.inplace = inplace | |
| m.dynamic = dynamic | |
| m.export = True | |
| for _ in range(2): | |
| y = model(im) # dry runs | |
| if half and not coreml: | |
| im, model = im.half(), model.half() # to FP16 | |
| shape = tuple((y[0] if isinstance(y, (tuple, list)) else y).shape) # model output shape | |
| metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata | |
| LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)") | |
| # Exports | |
| f = [''] * len(fmts) # exported filenames | |
| warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning | |
| if jit: # TorchScript | |
| f[0], _ = export_torchscript(model, im, file, optimize) | |
| if engine: # TensorRT required before ONNX | |
| f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose) | |
| if onnx or xml: # OpenVINO requires ONNX | |
| f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify) | |
| if onnx_end2end: | |
| if isinstance(model, DetectionModel): | |
| labels = model.names | |
| f[2], _ = export_onnx_end2end(model, im, file, simplify, topk_all, iou_thres, conf_thres, device, len(labels)) | |
| else: | |
| raise RuntimeError("The model is not a DetectionModel.") | |
| if xml: # OpenVINO | |
| f[3], _ = export_openvino(file, metadata, half) | |
| if coreml: # CoreML | |
| f[4], _ = export_coreml(model, im, file, int8, half) | |
| if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats | |
| assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.' | |
| assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.' | |
| f[5], s_model = export_saved_model(model.cpu(), | |
| im, | |
| file, | |
| dynamic, | |
| tf_nms=nms or agnostic_nms or tfjs, | |
| agnostic_nms=agnostic_nms or tfjs, | |
| topk_per_class=topk_per_class, | |
| topk_all=topk_all, | |
| iou_thres=iou_thres, | |
| conf_thres=conf_thres, | |
| keras=keras) | |
| if pb or tfjs: # pb prerequisite to tfjs | |
| f[6], _ = export_pb(s_model, file) | |
| if tflite or edgetpu: | |
| f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms) | |
| if edgetpu: | |
| f[8], _ = export_edgetpu(file) | |
| add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs)) | |
| if tfjs: | |
| f[9], _ = export_tfjs(file) | |
| if paddle: # PaddlePaddle | |
| f[10], _ = export_paddle(model, im, file, metadata) | |
| # Finish | |
| f = [str(x) for x in f if x] # filter out '' and None | |
| if any(f): | |
| cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type | |
| dir = Path('segment' if seg else 'classify' if cls else '') | |
| h = '--half' if half else '' # --half FP16 inference arg | |
| s = "# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference" if cls else \ | |
| "# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference" if seg else '' | |
| if onnx_end2end: | |
| LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)' | |
| f"\nResults saved to {colorstr('bold', file.parent.resolve())}" | |
| f"\nVisualize: https://netron.app") | |
| else: | |
| LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)' | |
| f"\nResults saved to {colorstr('bold', file.parent.resolve())}" | |
| f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}" | |
| f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}" | |
| f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}" | |
| f"\nVisualize: https://netron.app") | |
| return f # return list of exported files/dirs | |
| def parse_opt(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--data', type=str, default=ROOT / 'data/coco.yaml', help='dataset.yaml path') | |
| parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model.pt path(s)') | |
| parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)') | |
| parser.add_argument('--batch-size', type=int, default=1, help='batch size') | |
| parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |
| parser.add_argument('--half', action='store_true', help='FP16 half-precision export') | |
| parser.add_argument('--inplace', action='store_true', help='set YOLO Detect() inplace=True') | |
| parser.add_argument('--keras', action='store_true', help='TF: use Keras') | |
| parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile') | |
| parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization') | |
| parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes') | |
| parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model') | |
| parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version') | |
| parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log') | |
| parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)') | |
| parser.add_argument('--nms', action='store_true', help='TF: add NMS to model') | |
| parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model') | |
| parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep') | |
| parser.add_argument('--topk-all', type=int, default=100, help='ONNX END2END/TF.js NMS: topk for all classes to keep') | |
| parser.add_argument('--iou-thres', type=float, default=0.45, help='ONNX END2END/TF.js NMS: IoU threshold') | |
| parser.add_argument('--conf-thres', type=float, default=0.25, help='ONNX END2END/TF.js NMS: confidence threshold') | |
| parser.add_argument( | |
| '--include', | |
| nargs='+', | |
| default=['torchscript'], | |
| help='torchscript, onnx, onnx_end2end, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle') | |
| opt = parser.parse_args() | |
| if 'onnx_end2end' in opt.include: | |
| opt.simplify = True | |
| opt.dynamic = True | |
| opt.inplace = True | |
| opt.half = False | |
| print_args(vars(opt)) | |
| return opt | |
| def main(opt): | |
| for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]): | |
| run(**vars(opt)) | |
| if __name__ == "__main__": | |
| opt = parse_opt() | |
| main(opt) | |