Commit
·
b4192f2
1
Parent(s):
f384d65
Modified the Readme
Browse files- README.md +20 -2
- app.py +0 -14
- images/landing_page.JPG +0 -0
README.md
CHANGED
@@ -13,5 +13,23 @@ short_description: objectdetectionvideo
|
|
13 |
|
14 |
|
15 |
|
16 |
-
#
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
|
16 |
+
# OBJECT DETECTION WITH DIRECTION
|
17 |
+
|
18 |
+
This is a Object detection **APP** which takes in a video and gets the objects detected inside the video with their respective threshold scores.
|
19 |
+
|
20 |
+
Along with the threshold scores it also gives us the direction the respective object is moving.
|
21 |
+
|
22 |
+
Model used is Yolov8x.
|
23 |
+
|
24 |
+
Get all the files along with the model **[Here](https://huggingface.co/spaces/datasciencesage/object-detection-with-direction/tree/main)**
|
25 |
+
|
26 |
+
|
27 |
+
The Webapp is Deployed using Huggingface Spaces.
|
28 |
+
|
29 |
+
**[Acces-Here](https://datasciencesage-object-detection-with-direction.hf.space)**
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
### Landing Page
|
34 |
+
|
35 |
+

|
app.py
CHANGED
@@ -77,25 +77,19 @@ class ObjectTracker:
|
|
77 |
def main():
|
78 |
st.title("Real-time Object Detection with Direction")
|
79 |
|
80 |
-
# File uploader for video
|
81 |
uploaded_file = st.file_uploader("Choose a video file", type=['mp4', 'avi', 'mov'])
|
82 |
|
83 |
-
# Add start button
|
84 |
start_detection = st.button("Start Detection")
|
85 |
|
86 |
-
# Add stop button
|
87 |
stop_detection = st.button("Stop Detection")
|
88 |
|
89 |
if uploaded_file is not None and start_detection:
|
90 |
-
# Create a session state to track if detection is running
|
91 |
if 'running' not in st.session_state:
|
92 |
st.session_state.running = True
|
93 |
|
94 |
-
# Save uploaded file temporarily
|
95 |
tfile = tempfile.NamedTemporaryFile(delete=False)
|
96 |
tfile.write(uploaded_file.read())
|
97 |
|
98 |
-
# Load model
|
99 |
with st.spinner('Loading model...'):
|
100 |
model = YOLO('yolov8x.pt',verbose=False)
|
101 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -112,9 +106,7 @@ def main():
|
|
112 |
"stationary": (128, 128, 128)
|
113 |
}
|
114 |
|
115 |
-
# Create placeholder for video frame
|
116 |
frame_placeholder = st.empty()
|
117 |
-
# Create placeholder for detection info
|
118 |
info_placeholder = st.empty()
|
119 |
|
120 |
st.success("Detection Started!")
|
@@ -124,7 +116,6 @@ def main():
|
|
124 |
if not success:
|
125 |
break
|
126 |
|
127 |
-
# Run detection
|
128 |
results = model(frame,
|
129 |
conf=0.25,
|
130 |
iou=0.45,
|
@@ -138,7 +129,6 @@ def main():
|
|
138 |
|
139 |
tracked_objects = tracker.update(detections)
|
140 |
|
141 |
-
# Dictionary to store detection counts
|
142 |
detection_counts = {}
|
143 |
|
144 |
for detection, obj_id, direction in tracked_objects:
|
@@ -148,12 +138,10 @@ def main():
|
|
148 |
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
|
149 |
|
150 |
label = f"{model.names[int(cls)]} {direction} {conf:.2f}"
|
151 |
-
# Increased font size and thickness
|
152 |
font_scale = 1.2
|
153 |
thickness = 3
|
154 |
text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)[0]
|
155 |
|
156 |
-
# Increased padding for label background
|
157 |
padding_y = 15
|
158 |
cv2.rectangle(frame,
|
159 |
(int(x1), int(y1) - text_size[1] - padding_y),
|
@@ -167,11 +155,9 @@ def main():
|
|
167 |
(255, 255, 255),
|
168 |
thickness)
|
169 |
|
170 |
-
# Count detections by class
|
171 |
class_name = model.names[int(cls)]
|
172 |
detection_counts[class_name] = detection_counts.get(class_name, 0) + 1
|
173 |
|
174 |
-
# Convert BGR to RGB
|
175 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
176 |
|
177 |
# Update frame
|
|
|
77 |
def main():
|
78 |
st.title("Real-time Object Detection with Direction")
|
79 |
|
|
|
80 |
uploaded_file = st.file_uploader("Choose a video file", type=['mp4', 'avi', 'mov'])
|
81 |
|
|
|
82 |
start_detection = st.button("Start Detection")
|
83 |
|
|
|
84 |
stop_detection = st.button("Stop Detection")
|
85 |
|
86 |
if uploaded_file is not None and start_detection:
|
|
|
87 |
if 'running' not in st.session_state:
|
88 |
st.session_state.running = True
|
89 |
|
|
|
90 |
tfile = tempfile.NamedTemporaryFile(delete=False)
|
91 |
tfile.write(uploaded_file.read())
|
92 |
|
|
|
93 |
with st.spinner('Loading model...'):
|
94 |
model = YOLO('yolov8x.pt',verbose=False)
|
95 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
106 |
"stationary": (128, 128, 128)
|
107 |
}
|
108 |
|
|
|
109 |
frame_placeholder = st.empty()
|
|
|
110 |
info_placeholder = st.empty()
|
111 |
|
112 |
st.success("Detection Started!")
|
|
|
116 |
if not success:
|
117 |
break
|
118 |
|
|
|
119 |
results = model(frame,
|
120 |
conf=0.25,
|
121 |
iou=0.45,
|
|
|
129 |
|
130 |
tracked_objects = tracker.update(detections)
|
131 |
|
|
|
132 |
detection_counts = {}
|
133 |
|
134 |
for detection, obj_id, direction in tracked_objects:
|
|
|
138 |
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
|
139 |
|
140 |
label = f"{model.names[int(cls)]} {direction} {conf:.2f}"
|
|
|
141 |
font_scale = 1.2
|
142 |
thickness = 3
|
143 |
text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)[0]
|
144 |
|
|
|
145 |
padding_y = 15
|
146 |
cv2.rectangle(frame,
|
147 |
(int(x1), int(y1) - text_size[1] - padding_y),
|
|
|
155 |
(255, 255, 255),
|
156 |
thickness)
|
157 |
|
|
|
158 |
class_name = model.names[int(cls)]
|
159 |
detection_counts[class_name] = detection_counts.get(class_name, 0) + 1
|
160 |
|
|
|
161 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
162 |
|
163 |
# Update frame
|
images/landing_page.JPG
ADDED
|