File size: 7,031 Bytes
f384d65
34faab5
 
 
 
 
f384d65
 
 
 
34faab5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f384d65
 
34faab5
f384d65
 
34faab5
f384d65
 
34faab5
f384d65
 
34faab5
f384d65
 
 
 
 
 
 
 
34faab5
f384d65
 
 
 
 
34faab5
f384d65
 
34faab5
f384d65
 
 
 
 
 
 
34faab5
f384d65
 
 
 
34faab5
f384d65
34faab5
f384d65
 
 
 
34faab5
f384d65
 
 
 
 
 
34faab5
f384d65
 
 
 
34faab5
f384d65
34faab5
f384d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34faab5
f384d65
 
34faab5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import streamlit as st
from ultralytics import YOLO
import cv2
import time
import numpy as np
import torch
from PIL import Image
import tempfile
import warnings
warnings.filterwarnings('ignore')

def get_direction(old_center, new_center, min_movement=10):
    if old_center is None or new_center is None:
        return "stationary"
    
    dx = new_center[0] - old_center[0]
    dy = new_center[1] - old_center[1]
    
    if abs(dx) < min_movement and abs(dy) < min_movement:
        return "stationary"
    
    if abs(dx) > abs(dy):
        return "right" if dx > 0 else "left"
    else:
        return "down" if dy > 0 else "up"

class ObjectTracker:
    def __init__(self):
        self.tracked_objects = {}
        self.object_count = {}
    
    def update(self, detections):
        current_objects = {}
        results = []
        
        for detection in detections:
            x1, y1, x2, y2 = detection[0:4]
            center = ((x1 + x2) // 2, (y1 + y2) // 2)
            class_id = detection[5]
            
            object_id = f"{class_id}_{len(self.object_count.get(class_id, []))}"
            
            min_dist = float('inf')
            closest_id = None
            
            for prev_id, prev_data in self.tracked_objects.items():
                if prev_id.split('_')[0] == str(class_id):
                    dist = np.sqrt((center[0] - prev_data['center'][0])**2 + 
                                 (center[1] - prev_data['center'][1])**2)
                    if dist < min_dist and dist < 100:
                        min_dist = dist
                        closest_id = prev_id
            
            if closest_id:
                object_id = closest_id
            else:
                if class_id not in self.object_count:
                    self.object_count[class_id] = []
                self.object_count[class_id].append(object_id)
            
            prev_center = self.tracked_objects.get(object_id, {}).get('center', None)
            direction = get_direction(prev_center, center)
            
            current_objects[object_id] = {
                'center': center,
                'direction': direction,
                'detection': detection
            }
            
            results.append((detection, object_id, direction))
        
        self.tracked_objects = current_objects
        return results


    
def main():
    st.title("Real-time Object Detection with Direction")
    
    # File uploader for video
    uploaded_file = st.file_uploader("Choose a video file", type=['mp4', 'avi', 'mov'])
    
    # Add start button
    start_detection = st.button("Start Detection")
    
    # Add stop button
    stop_detection = st.button("Stop Detection")
    
    if uploaded_file is not None and start_detection:
        # Create a session state to track if detection is running
        if 'running' not in st.session_state:
            st.session_state.running = True
            
        # Save uploaded file temporarily
        tfile = tempfile.NamedTemporaryFile(delete=False)
        tfile.write(uploaded_file.read())
        
        # Load model
        with st.spinner('Loading model...'):
            model = YOLO('yolov8x.pt',verbose=False)
            device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
            model.to(device)
        
        tracker = ObjectTracker()
        cap = cv2.VideoCapture(tfile.name)
        
        direction_colors = {
            "left": (255, 0, 0),
            "right": (0, 255, 0),
            "up": (0, 255, 255),
            "down": (0, 0, 255),
            "stationary": (128, 128, 128)
        }
        
        # Create placeholder for video frame
        frame_placeholder = st.empty()
        # Create placeholder for detection info
        info_placeholder = st.empty()
        
        st.success("Detection Started!")
        
        while cap.isOpened() and st.session_state.running:
            success, frame = cap.read()
            if not success:
                break
            
            # Run detection
            results = model(frame, 
                          conf=0.25,
                          iou=0.45,
                          max_det=20,
                          verbose=False)[0]
            
            detections = []
            for box in results.boxes.data:
                x1, y1, x2, y2, conf, cls = box.tolist()
                detections.append([int(x1), int(y1), int(x2), int(y2), float(conf), int(cls)])
            
            tracked_objects = tracker.update(detections)
            
            # Dictionary to store detection counts
            detection_counts = {}
            
            for detection, obj_id, direction in tracked_objects:
                x1, y1, x2, y2, conf, cls = detection
                color = direction_colors.get(direction, (128, 128, 128))
                
                cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
                
                label = f"{model.names[int(cls)]} {direction} {conf:.2f}"
                # Increased font size and thickness
                font_scale = 1.2
                thickness = 3
                text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)[0]
                
                # Increased padding for label background
                padding_y = 15
                cv2.rectangle(frame, 
                             (int(x1), int(y1) - text_size[1] - padding_y), 
                             (int(x1) + text_size[0], int(y1)), 
                             color, -1)
                
                cv2.putText(frame, label, 
                           (int(x1), int(y1) - 5), 
                           cv2.FONT_HERSHEY_SIMPLEX, 
                           font_scale, 
                           (255, 255, 255), 
                           thickness)
                
                # Count detections by class
                class_name = model.names[int(cls)]
                detection_counts[class_name] = detection_counts.get(class_name, 0) + 1
            
            # Convert BGR to RGB
            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            
            # Update frame
            frame_placeholder.image(frame_rgb, channels="RGB", use_column_width=True)
            
            # Update detection info
            info_text = "Detected Objects:\n"
            for class_name, count in detection_counts.items():
                info_text += f"{class_name}: {count}\n"
            info_placeholder.text(info_text)
            
            # Check if stop button is pressed
            if stop_detection:
                st.session_state.running = False
                break
            
        cap.release()
        st.session_state.running = False
        st.warning("Detection Stopped")
        
    elif uploaded_file is None and start_detection:
        st.error("Please upload a video file first!")

if __name__ == "__main__":
    main()