Spaces:
Sleeping
Sleeping
File size: 6,802 Bytes
f49ec35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import os
os.environ["KERAS_BACKEND"] = "jax"
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
import logging
from pathlib import Path
import numpy as np
import librosa
import tensorflow_hub as hub
from flask import Flask, render_template, request, jsonify, session
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import keras
import torch
from werkzeug.utils import secure_filename
import traceback
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('app.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Environment setup
class AudioProcessor:
_instance = None
_initialized = False
def __new__(cls):
if cls._instance is None:
cls._instance = super(AudioProcessor, cls).__new__(cls)
return cls._instance
def __init__(self):
if not AudioProcessor._initialized:
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
self.torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
self.initialize_models()
AudioProcessor._initialized = True
def initialize_models(self):
try:
logger.info("Initializing models...")
# Initialize transcription model
model_id = "distil-whisper/distil-large-v3"
self.transcription_model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=self.torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
self.transcription_model.to(self.device)
self.processor = AutoProcessor.from_pretrained(model_id)
# Initialize classification model
self.classification_model = keras.saving.load_model("hf://datasciencesage/attentionaudioclassification")
# Initialize pipeline
self.pipe = pipeline(
"automatic-speech-recognition",
model=self.transcription_model,
tokenizer=self.processor.tokenizer,
feature_extractor=self.processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=25,
batch_size=16,
torch_dtype=self.torch_dtype,
device=self.device,
)
# Initialize YAMNet model
self.yamnet_model = hub.load('https://tfhub.dev/google/yamnet/1')
logger.info("Models initialized successfully")
except Exception as e:
logger.error(f"Error initializing models: {str(e)}")
raise
def load_wav_16k_mono(self, filename):
try:
wav, sr = librosa.load(filename, mono=True, sr=None)
if sr != 16000:
wav = librosa.resample(wav, orig_sr=sr, target_sr=16000)
return wav
except Exception as e:
logger.error(f"Error loading audio file: {str(e)}")
raise
def get_features_yamnet_extract_embedding(self, wav_data):
try:
scores, embeddings, spectrogram = self.yamnet_model(wav_data)
return np.mean(embeddings.numpy(), axis=0)
except Exception as e:
logger.error(f"Error extracting YAMNet embeddings: {str(e)}")
raise
# Initialize Flask application
app = Flask(__name__)
app.secret_key = 'your_secret_key_here'
app.config['UPLOAD_FOLDER'] = Path('uploads')
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024
# Create upload folder
app.config['UPLOAD_FOLDER'].mkdir(exist_ok=True)
# Initialize audio processor (will only happen once)
audio_processor = AudioProcessor()
@app.route('/')
def index():
session.clear()
return render_template('terminal.html')
@app.route('/process', methods=['POST'])
def process():
try:
data = request.json
command = data.get('command', '').strip().lower()
if command in ['classify', 'transcribe']:
session['operation'] = command
return jsonify({
'result': f'root@math:~$ Upload a .mp3 file for {command} operation.',
'upload': True
})
else:
return jsonify({
'result': 'root@math:~$ Please specify an operation: "classify" or "transcribe".'
})
except Exception as e:
logger.error(f"Error in process route: {str(e)}\n{traceback.format_exc()}")
session.pop('operation', None)
return jsonify({'result': f'root@math:~$ Error: {str(e)}'})
@app.route('/upload', methods=['POST'])
def upload():
filepath = None
try:
operation = session.get('operation')
if not operation:
return jsonify({
'result': 'root@math:~$ Please specify an operation first: "classify" or "transcribe".'
})
if 'file' not in request.files:
return jsonify({'result': 'root@math:~$ No file uploaded.'})
file = request.files['file']
if file.filename == '' or not file.filename.lower().endswith('.mp3'):
return jsonify({'result': 'root@math:~$ Please upload a valid .mp3 file.'})
filename = secure_filename(file.filename)
filepath = app.config['UPLOAD_FOLDER'] / filename
file.save(filepath)
wav_data = audio_processor.load_wav_16k_mono(filepath)
if operation == 'classify':
embeddings = audio_processor.get_features_yamnet_extract_embedding(wav_data)
embeddings = np.reshape(embeddings, (-1, 1024))
result = np.argmax(audio_processor.classification_model.predict(embeddings))
elif operation == 'transcribe':
result = audio_processor.pipe(str(filepath))['text']
else:
result = 'Invalid operation'
return jsonify({
'result': f'root@math:~$ Result is: {result}\nroot@math:~$ Please specify an operation: "classify" or "transcribe".',
'upload': False
})
except Exception as e:
logger.error(f"Error in upload route: {str(e)}\n{traceback.format_exc()}")
return jsonify({
'result': f'root@math:~$ Error: {str(e)}\nroot@math:~$ Please specify an operation: "classify" or "transcribe".'
})
finally:
session.pop('operation', None)
if filepath and Path(filepath).exists():
try:
Path(filepath).unlink()
except Exception as e:
logger.error(f"Error deleting file {filepath}: {str(e)}")
if __name__ == '__main__':
# Set debug=False to prevent reloading
app.run(debug=False, host='0.0.0.0', port=5000) |