datasciencedojo commited on
Commit
d2c421c
·
1 Parent(s): 3dfb1d5

updated code to resolve import error

Browse files
Files changed (1) hide show
  1. app.py +9 -22
app.py CHANGED
@@ -1,11 +1,10 @@
1
  import nltk
2
  nltk.download('punkt')
3
 
4
- import nltk
5
  from nltk.stem.lancaster import LancasterStemmer
6
  import numpy as np
7
- import tflearn
8
- import tensorflow
9
  import random
10
  import json
11
  import pandas as pd
@@ -18,18 +17,9 @@ with open("intents.json") as file:
18
  data = json.load(file)
19
 
20
  with open("data.pickle", "rb") as f:
21
- words, labels, training, output = pickle.load(f)
22
-
23
- net = tflearn.input_data(shape=[None, len(training[0])])
24
- net = tflearn.fully_connected(net, 8)
25
- net = tflearn.fully_connected(net, 8)
26
- net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
27
- net = tflearn.regression(net)
28
-
29
- model = tflearn.DNN(net)
30
- model.load("MentalHealthChatBotmodel.tflearn")
31
- # print('model loaded successfully')
32
 
 
33
 
34
  def bag_of_words(s, words):
35
  bag = [0 for _ in range(len(words))]
@@ -44,25 +34,22 @@ def bag_of_words(s, words):
44
 
45
  return np.array(bag)
46
 
47
-
48
  def chat(message, history):
49
  history = history or []
50
  message = message.lower()
51
- results = model.predict([bag_of_words(message, words)])
52
  results_index = np.argmax(results)
53
  tag = labels[results_index]
54
 
55
  for tg in data["intents"]:
56
- if tg['tag'] == tag:
57
- responses = tg['responses']
 
58
 
59
- # print(random.choice(responses))
60
- response = random.choice(responses)
61
-
62
  history.append((message, response))
63
  return history, history
64
 
65
- chatbot = gr.Chatbot(label="Chat")
66
  css = """
67
  footer {display:none !important}
68
  .output-markdown{display:none !important}
 
1
  import nltk
2
  nltk.download('punkt')
3
 
 
4
  from nltk.stem.lancaster import LancasterStemmer
5
  import numpy as np
6
+ import tensorflow as tf
7
+ from tensorflow.keras.models import load_model
8
  import random
9
  import json
10
  import pandas as pd
 
17
  data = json.load(file)
18
 
19
  with open("data.pickle", "rb") as f:
20
+ words, labels, training, output = pickle.load(f)
 
 
 
 
 
 
 
 
 
 
21
 
22
+ model = load_model("MentalHealthChatBotmodel.tflearn")
23
 
24
  def bag_of_words(s, words):
25
  bag = [0 for _ in range(len(words))]
 
34
 
35
  return np.array(bag)
36
 
 
37
  def chat(message, history):
38
  history = history or []
39
  message = message.lower()
40
+ results = model.predict(np.array([bag_of_words(message, words)]))
41
  results_index = np.argmax(results)
42
  tag = labels[results_index]
43
 
44
  for tg in data["intents"]:
45
+ if tg['tag'] == tag:
46
+ responses = tg['responses']
47
+ response = random.choice(responses)
48
 
 
 
 
49
  history.append((message, response))
50
  return history, history
51
 
52
+ chatbot = gr.Chatbot(chat)
53
  css = """
54
  footer {display:none !important}
55
  .output-markdown{display:none !important}