datasciencedojo commited on
Commit
9b809c7
·
verified ·
1 Parent(s): d517f84

upgraded code based on newer gradio version

Browse files
Files changed (1) hide show
  1. app.py +33 -29
app.py CHANGED
@@ -1,43 +1,47 @@
1
  import cv2
2
  import gradio as gr
3
  import mediapipe as mp
 
4
  mp_drawing = mp.solutions.drawing_utils
5
  mp_drawing_styles = mp.solutions.drawing_styles
6
  mp_hands = mp.solutions.hands
7
 
8
  def fun(img):
9
- print(type(img))
10
- with mp_hands.Hands( model_complexity=0,min_detection_confidence=0.5,min_tracking_confidence=0.5) as hands:
11
- img.flags.writeable = False
12
- image = cv2.flip(img[:,:,::-1], 1)
13
- # Convert the BGR image to RGB before processing.
14
- results = hands.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
15
- image.flags.writeable = True
16
- if results.multi_hand_landmarks:
17
- for hand_landmarks in results.multi_hand_landmarks:
18
- mp_drawing.draw_landmarks(
19
- image,
20
- hand_landmarks,
21
- mp_hands.HAND_CONNECTIONS,
22
- mp_drawing_styles.get_default_hand_landmarks_style(),
23
- mp_drawing_styles.get_default_hand_connections_style())
24
-
25
- return cv2.flip(image[:,:,::-1],1)
26
-
27
- with gr.Blocks(title="Realtime Keypoint Detection | Data Science Dojo", css="footer {display:none !important} .output-markdown{display:none !important}") as demo:
 
28
 
29
- with gr.Row():
30
- with gr.Column():
31
- input = gr.Webcam(streaming=True)
32
 
33
- with gr.Column():
34
- output = gr.outputs.Image()
 
 
35
 
36
-
37
- input.stream(fn=fun,
38
- inputs = input,
39
- outputs = output)
40
 
41
-
 
 
 
 
42
 
43
  demo.launch(debug=True)
 
1
  import cv2
2
  import gradio as gr
3
  import mediapipe as mp
4
+
5
  mp_drawing = mp.solutions.drawing_utils
6
  mp_drawing_styles = mp.solutions.drawing_styles
7
  mp_hands = mp.solutions.hands
8
 
9
  def fun(img):
10
+ print(type(img))
11
+ with mp_hands.Hands(
12
+ model_complexity=0,
13
+ min_detection_confidence=0.5,
14
+ min_tracking_confidence=0.5
15
+ ) as hands:
16
+ img.flags.writeable = False
17
+ image = cv2.flip(img[:, :, ::-1], 1)
18
+ # Convert the BGR image to RGB before processing.
19
+ results = hands.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
20
+ image.flags.writeable = True
21
+ if results.multi_hand_landmarks:
22
+ for hand_landmarks in results.multi_hand_landmarks:
23
+ mp_drawing.draw_landmarks(
24
+ image,
25
+ hand_landmarks,
26
+ mp_hands.HAND_CONNECTIONS,
27
+ mp_drawing_styles.get_default_hand_landmarks_style(),
28
+ mp_drawing_styles.get_default_hand_connections_style()
29
+ )
30
 
31
+ return cv2.flip(image[:, :, ::-1], 1)
 
 
32
 
33
+ with gr.Blocks(title="Realtime Keypoint Detection | Data Science Dojo", css="footer {display:none !important} .output-markdown{display:none !important}") as demo:
34
+ with gr.Row():
35
+ with gr.Column():
36
+ webcam_input = gr.Video(source="webcam", label="Webcam Input")
37
 
38
+ with gr.Column():
39
+ output = gr.Image(label="Output Image")
 
 
40
 
41
+ webcam_input.stream(
42
+ fn=fun,
43
+ inputs=webcam_input,
44
+ outputs=output
45
+ )
46
 
47
  demo.launch(debug=True)