Spaces:
Sleeping
Sleeping
File size: 5,813 Bytes
b2e8432 984add3 2096cd3 984add3 2096cd3 476fbdb b2e8432 476fbdb 2096cd3 984add3 2096cd3 984add3 2096cd3 984add3 2096cd3 984add3 2096cd3 48ba2af d0bc8ee 2096cd3 984add3 2096cd3 984add3 2096cd3 8e6312c 2096cd3 984add3 2096cd3 984add3 2096cd3 476fbdb 2096cd3 476fbdb 984add3 476fbdb 489f421 89a3bfc 476fbdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import os
import json
import gradio as gr
import pandas as pd
from python_request import process_wod_document
from dummy import output_test
# --- Authentication Function ---
def authenticate_user(username, password):
"""
Simple authentication function.
In production, you should use more secure methods like hashed passwords.
"""
return username == "demo" and password == os.environ["PASSWORD"]
# --- Core Application Logic ---
def analyze_wod(file_obj, wod_type):
"""
This function analyzes a Work Order Document using the remote API.
Args:
file_obj: The uploaded file object from Gradio.
wod_type: The selected type of Work Order Document.
Returns:
A pandas DataFrame with the analysis results.
"""
# Check if user has selected a valid WOD type
if wod_type == "-- WOD type --" or wod_type is None:
# Show warning dialog and return empty DataFrame
gr.Warning("Please select a WOD type first!")
return pd.DataFrame()
# Check if file is uploaded
if file_obj is None:
gr.Warning("Please upload a PDF file first!")
return pd.DataFrame()
print(f"Analyzing '{file_obj.name}' (Type: {wod_type})...")
try:
# In modern Gradio versions, file_obj is already a path string
# We can use it directly or get the path from it
if hasattr(file_obj, 'name') and os.path.isfile(file_obj.name):
# file_obj has a .name attribute pointing to the temporary file
temp_file_path = file_obj.name
cleanup_needed = False
else:
# Fallback: assume file_obj is a path string
temp_file_path = str(file_obj)
cleanup_needed = False
# Process the document using the API
#api_response = process_wod_document(temp_file_path, wod_type)
api_response = json.loads(output_test)
# Clean up temporary file if we created one
if cleanup_needed:
os.unlink(temp_file_path)
# Check if API call was successful
if api_response.get("status") != "success":
error_msg = api_response.get("message", "Unknown error occurred")
gr.Error(f"API Error: {error_msg}")
return pd.DataFrame()
# Parse the API response
results = api_response.get("results", {})
summary = results.get("summary", {})
# Convert API response to DataFrame format
requirements = []
reasons = []
statuses = []
for requirement_name, details in summary.items():
requirements.append(requirement_name)
reasons.append(details.get("reasoning", ""))
# Convert true/false to PASS/FAIL
status_bool = details.get("status", "false")
if isinstance(status_bool, str):
status = "PASS" if status_bool.lower() == "true" else "FAIL"
else:
status = "PASS" if status_bool else "FAIL"
statuses.append(status)
# Create DataFrame
df = pd.DataFrame({
"Requirement": requirements,
"Reason": reasons,
"Status": statuses
})
# Show success message with prediction
prediction = results.get("prediction", "Unknown")
gr.Info(f"Analysis completed! Overall prediction: {prediction}")
return df
except Exception as e:
error_msg = f"Error processing document: {str(e)}"
print(error_msg)
gr.Error(error_msg)
return pd.DataFrame()
# --- Gradio User Interface Definition ---
# Using gr.Blocks() for a custom layout that matches the elegant design.
with gr.Blocks(
#theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
theme=gr.themes.Default(primary_hue="blue", secondary_hue="sky"),
css=".gradio-container {max-width: 960px !important; margin: auto !important;}"
) as demo:
# Main Title and Description
gr.Markdown(
"""
# WOD Analyzer
Upload a Work Order Document to automatically check for requirements.
"""
)
# Input Section
with gr.Row():
# File Upload Component
file_input = gr.File(label="Upload WOD PDF")
# Dropdown for WOD Type
type_input = gr.Dropdown(
["-- WOD type --", "REPLACEMENT", "THERMAL", "VISIT", "PREVENTIVE_MAINTENANCE", "INSTALLATION", "WITHDRAWAL"],
label="Type",
value="-- WOD type --",
info="Select the type of work order."
)
# Action Button
analyze_btn = gr.Button("Analyze Document", variant="primary")
# Results Section
gr.Markdown("---")
gr.Markdown("## Results")
# DataFrame to display the output, with styling for the 'Status' column
results_output = gr.DataFrame(
headers=["Requirement", "Reason", "Status"],
datatype=["str", "str", "str"],
interactive=False,
max_height=1250,
column_widths=[30, 60, 10],
wrap=True
)
# Define the interaction: clicking the button calls the function
analyze_btn.click(
fn=analyze_wod,
inputs=[file_input, type_input],
outputs=[results_output]
)
# --- Launch the Application with Authentication ---
if __name__ == "__main__":
# The launch() command creates a web server with authentication enabled
# Users must provide the correct username and password to access the app
# demo.launch(debug=True)
demo.launch(
auth=authenticate_user, # Enable authentication
auth_message="Please enter your credentials to access the WOD Analyzer",
share=True,
ssr_mode=False,
) |