File size: 4,345 Bytes
60d5c99
b2efd5e
 
ec4765e
b2efd5e
 
 
 
60d5c99
 
b2efd5e
 
 
 
ec4765e
 
b2efd5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60d5c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Required imports
import json
import time
import os
from sentence_transformers import SentenceTransformer
from pinecone import Pinecone, ServerlessSpec
from groq import Groq
from tqdm.auto import tqdm
import streamlit as st

# Constants (hardcoded)
FILE_PATH = "anjibot_chunks.json"
BATCH_SIZE = 384
INDEX_NAME = "groq-llama-3-rag"
PINECONE_API_KEY = os.getenv["PINECONE_API_KEY"]
GROQ_API_KEY = os.getenv["GROQ_API_KEY"]
DIMENSIONS = 768


def load_data(file_path: str) -> dict:
    with open(file_path, 'r') as file:
        return json.load(file)


def initialize_pinecone(api_key: str, index_name: str, dims: int) -> any:
    pc = Pinecone(api_key=api_key)
    spec = ServerlessSpec(cloud="aws", region='us-east-1')

    existing_indexes = [index_info["name"] for index_info in pc.list_indexes()]

    # Check if index already exists; if not, create it
    if index_name not in existing_indexes:
        pc.create_index(index_name, dimension=dims, metric='cosine', spec=spec)

        # Wait for the index to be initialized
        while not pc.describe_index(index_name).status['ready']:
            time.sleep(1)

    return pc.Index(index_name)


def upsert_data_to_pinecone(index: any, data: dict):
    encoder = SentenceTransformer('dwzhu/e5-base-4k')
    
    for i in tqdm(range(0, len(data['id']), BATCH_SIZE)):
        # Find end of batch
        i_end = min(len(data['id']), i + BATCH_SIZE)
        
        # Create batch
        batch = {k: v[i:i_end] for k, v in data.items()}
        
        # Create embeddings
        chunks = [f'{x["title"]}: {x["content"]}' for x in batch["metadata"]]
        embeds = encoder.encode(chunks)

        # Ensure correct length
        assert len(embeds) == (i_end - i)

        # Upsert to Pinecone
        to_upsert = list(zip(batch["id"], embeds, batch["metadata"]))
        index.upsert(vectors=to_upsert)


def get_docs(query: str, index: any, encoder: any, top_k: int) -> list[str]:
    xq = encoder.encode(query)
    res = index.query(vector=xq.tolist(), top_k=top_k, include_metadata=True)
    return [x["metadata"]['content'] for x in res["matches"]]


def get_response(query: str, docs: list[str], groq_client: any) -> str:
    system_message = (
        "You are Anjibot, the AI course rep of 400 Level Computer Science department. You are always helpful, jovial, can be sarcastica but still sweet.\n"
        "Provide the answer to class related queries using\n"
        "context provided below.\n"
        "If you don't the answer to the user's question based on your pretrained knowledge and the context provided, just direct the user to Anji the human course rep.\n"
        "Anji's phone number: 08145170886.\n\n"
        "CONTEXT:\n"
        "\n---\n".join(docs)
        )
    messages = [
        {"role": "system", "content": system_message},
        {"role": "user", "content": query}
    ]

    chat_response = groq_client.chat.completions.create(
        model="llama3-70b-8192",
        messages=messages
    )
    return chat_response.choices[0].message.content


def handle_query(user_query: str):
    # Load data
    data = load_data(FILE_PATH)

    # Initialize Pinecone
    index = initialize_pinecone(PINECONE_API_KEY, INDEX_NAME, DIMENSIONS)

    # Upsert data into Pinecone
    upsert_data_to_pinecone(index, data)

    # Initialize encoder and Groq client
    encoder = SentenceTransformer('dwzhu/e5-base-4k')
    groq_client = Groq(api_key=GROQ_API_KEY)

    # Get relevant documents
    docs = get_docs(user_query, index, encoder, top_k=5)

    # Generate and return response
    response = get_response(user_query, docs, groq_client)

    return response

def main():
    st.title("Ask Anjibot 2.0")

    if "messages" not in st.session_state:
        st.session_state.messages = []

    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    if prompt := st.chat_input("Ask me anything"):
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.markdown(prompt)

        with st.chat_message("assistant"):
            response = st.write_stream(handle_query(prompt))
        st.session_state.messages.append({"role": "assistant", "content": response})

if __name__ == "__main__":
    main()