Mustehson
Prototype
4aef500
raw
history blame
5.33 kB
import os
import duckdb
import spaces
import gradio as gr
import pandas as pd
from llama_cpp import Llama
# from dotenv import load_dotenv
from huggingface_hub import hf_hub_download
# load_dotenv()
# Height of the Tabs Text Area
TAB_LINES = 8
# Load Token
md_token = os.getenv('MD_TOKEN')
# Connect to DB
conn = duckdb.connect(f"md:my_db?motherduck_token={md_token}")
# Custom CSS styling
custom_css = """
.gradio-container {
background-color: #f0f4f8;
}
.logo {
max-width: 200px;
margin: 20px auto;
display: block;
}
.gr-button {
background-color: #4a90e2 !important;
}
.gr-button:hover {
background-color: #3a7bc8 !important;
}
"""
print('Loading Model...')
# Load Model
llama = Llama(
model_path=hf_hub_download(
repo_id="motherduckdb/DuckDB-NSQL-7B-v0.1-GGUF",
filename="DuckDB-NSQL-7B-v0.1-q8_0.gguf",
local_dir='.'
),
n_ctx=2048,
n_gpu_layers=-1
)
print('Model Loaded...')
# Get Databases
def get_databases():
databases = conn.execute("PRAGMA show_databases").fetchall()
return [item[0] for item in databases]
# Get Tables
def get_tables(database):
conn.execute(f"USE {database}")
tables = conn.execute("SHOW TABLES").fetchall()
return [table[0] for table in tables]
# Update Tables
def update_tables(selected_db):
tables = get_tables(selected_db)
return gr.update(choices=tables)
# Get Schema
def get_schema(table):
conn.execute(f"SELECT * FROM '{table}' LIMIT 1;")
result = conn.sql(f"SELECT sql FROM duckdb_tables() where table_name ='{table}';").df()
ddl_create = result.iloc[0,0]
return ddl_create
# Get Prompt
def get_prompt(schema, query_input):
text = f"""
### Instruction:
Your task is to generate valid duckdb SQL to answer the following question.
### Input:
Here is the database schema that the SQL query will run on:
{schema}
### Question:
{query_input}
### Response (use duckdb shorthand if possible):
"""
return text
# Generate SQL
@spaces.GPU
def generate_sql(prompt):
result = llama(prompt, temperature=0.1, max_tokens=1000)
return result["choices"][0]["text"]
def text2sql(table, query_input):
if table is None:
return {
table_schema: "",
input_prompt: "",
generated_query: "",
result_output:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {e}"}])
}
schema = get_schema(table)
prompt = get_prompt(schema, query_input)
try:
result = generate_sql(prompt)
except Exception as e:
return {
table_schema: schema,
input_prompt: prompt,
generated_query: "",
result_output:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {e}"}])
}
try:
query_result = conn.sql(result).df()
conn.close()
except Exception as e:
return {
table_schema: schema,
input_prompt: prompt,
generated_query: result,
result_output:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {e}"}])
}
conn.close()
return {
table_schema: schema,
input_prompt: prompt,
generated_query: result,
result_output:query_result
}
# Load Databases Names
databases = get_databases()
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css) as demo:
gr.Image("logo.png", label=None, show_label=False, container=False, height=100)
gr.Markdown("""
<div style='text-align: center;'>
<strong style='font-size: 36px;'>Datajoi SQL Agent</strong>
<br>
<span style='font-size: 20px;'>Generate and Run SQL queries based on a given text for the dataset.</span>
</div>
""")
with gr.Row():
with gr.Column(scale=1, variant='panel'):
database_dropdown = gr.Dropdown(choices=databases, label="Select Database", interactive=True)
tables_dropdown = gr.Dropdown(choices=[], label="Available Tables", value=None)
with gr.Column(scale=2):
query_input = gr.Textbox(lines=5, label="Text Query", placeholder="Enter your text query here...")
generate_query_button = gr.Button("Run Query", variant="primary")
with gr.Tabs():
with gr.Tab("Result"):
result_output = gr.DataFrame(label="Query Results", value=[], interactive=False)
with gr.Tab("SQL Query"):
generated_query = gr.Textbox(lines=TAB_LINES, label="Generated SQL Query", value="", interactive=False)
with gr.Tab("Prompt"):
input_prompt = gr.Textbox(lines=TAB_LINES, label="Input Prompt", value="", interactive=False)
with gr.Tab("Schema"):
table_schema = gr.Textbox(lines=TAB_LINES, label="Schema", value="", interactive=False)
database_dropdown.change(update_tables, inputs=database_dropdown, outputs=tables_dropdown)
generate_query_button.click(text2sql, inputs=[tables_dropdown, query_input], outputs=[table_schema, input_prompt, generated_query, result_output])
if __name__ == "__main__":
demo.launch()