Mustehson
Clear Function
11dc9b2
raw
history blame
6.65 kB
import os
import torch
import duckdb
import spaces
import gradio as gr
import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
# Height of the Tabs Text Area
TAB_LINES = 8
# Load Token
md_token = os.getenv('MD_TOKEN')
print('Connecting to DB...')
# Connect to DB
conn = duckdb.connect(f"md:my_db?motherduck_token={md_token}", read_only=True)
if torch.cuda.is_available():
device = torch.device("cuda")
print(f"Using GPU: {torch.cuda.get_device_name(device)}")
else:
device = torch.device("cpu")
print("Using CPU")
print('Loading Model...')
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1")
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type= "nf4")
model = AutoModelForCausalLM.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1", quantization_config=quantization_config,
device_map="auto", torch_dtype=torch.bfloat16)
print('Model Loaded...')
print(f'Model Device: {model.device}')
# Get Databases
def get_schemas():
schemas = conn.execute("""
SELECT DISTINCT schema_name
FROM information_schema.schemata
WHERE schema_name NOT IN ('information_schema', 'pg_catalog')
""").fetchall()
return [item[0] for item in schemas]
# Get Tables
def get_tables(schema_name):
tables = conn.execute(f"SELECT table_name FROM information_schema.tables WHERE table_schema = '{schema_name}'").fetchall()
return [table[0] for table in tables]
# Update Tables
def update_tables(schema_name):
tables = get_tables(schema_name)
return gr.update(choices=tables)
# Get Schema
def get_table_schema(table):
result = conn.sql(f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';").df()
ddl_create = result.iloc[0,0]
parent_database = result.iloc[0,1]
schema_name = result.iloc[0,2]
full_path = f"{parent_database}.{schema_name}.{table}"
if schema_name != "main":
old_path = f"{schema_name}.{table}"
else:
old_path = table
ddl_create = ddl_create.replace(old_path, full_path)
return ddl_create
# Get Prompt
def get_prompt(schema, query_input):
text = f"""
### Instruction:
Your task is to generate valid duckdb SQL query to answer the following question.
### Input:
Here is the database schema that the SQL query will run on:
{schema}
### Question:
{query_input}
### Response (use duckdb shorthand if possible):
"""
return text
@spaces.GPU(duration=60)
def generate_sql(prompt):
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
input_token_len = input_ids.shape[1]
outputs = model.generate(input_ids.to(model.device), max_new_tokens=1024)
result = tokenizer.decode(outputs[0][input_token_len:], skip_special_tokens=True)
return result
# Generate SQL
def text2sql(table, query_input):
if table is None:
return {
table_schema: "",
input_prompt: "",
generated_query: "",
result_output:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {e}"}])
}
schema = get_table_schema(table)
print(f'Schema Generated...')
prompt = get_prompt(schema, query_input)
print(f'Prompt Generated...')
try:
print(f'Generating SQL... {model.device}')
result = generate_sql(prompt)
print('SQL Generated...')
except Exception as e:
return {
table_schema: schema,
input_prompt: prompt,
generated_query: "",
result_output:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {e}"}])
}
try:
query_result = conn.sql(result).df()
except Exception as e:
return {
table_schema: schema,
input_prompt: prompt,
generated_query: result,
result_output:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {e}"}])
}
return {
table_schema: schema,
input_prompt: prompt,
generated_query: result,
result_output:query_result
}
# Custom CSS styling
custom_css = """
.gradio-container {
background-color: #f0f4f8;
}
.logo {
max-width: 200px;
margin: 20px auto;
display: block;
}
.gr-button {
background-color: #4a90e2 !important;
}
.gr-button:hover {
background-color: #3a7bc8 !important;
}
"""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css) as demo:
gr.Image("logo.png", label=None, show_label=False, container=False, height=100)
gr.Markdown("""
<div style='text-align: center;'>
<strong style='font-size: 36px;'>Datajoi SQL Agent</strong>
<br>
<span style='font-size: 20px;'>Generate and Run SQL queries based on a given text for the dataset.</span>
</div>
""")
with gr.Row():
with gr.Column(scale=1, variant='panel'):
schema_dropdown = gr.Dropdown(choices=get_schemas(), label="Select Schema", interactive=True)
tables_dropdown = gr.Dropdown(choices=[], label="Available Tables", value=None)
with gr.Column(scale=2):
query_input = gr.Textbox(lines=5, label="Text Query", placeholder="Enter your text query here...")
with gr.Row():
with gr.Column(scale=7):
pass
with gr.Column(scale=1):
generate_query_button = gr.Button("Run Query", variant="primary")
with gr.Tabs():
with gr.Tab("Result"):
result_output = gr.DataFrame(label="Query Results", value=[], interactive=False)
with gr.Tab("SQL Query"):
generated_query = gr.Textbox(lines=TAB_LINES, label="Generated SQL Query", value="", interactive=False)
with gr.Tab("Prompt"):
input_prompt = gr.Textbox(lines=TAB_LINES, label="Input Prompt", value="", interactive=False)
with gr.Tab("Schema"):
table_schema = gr.Textbox(lines=TAB_LINES, label="Table Schema", value="", interactive=False)
schema_dropdown.change(update_tables, inputs=schema_dropdown, outputs=tables_dropdown)
generate_query_button.click(text2sql, inputs=[tables_dropdown, query_input], outputs=[table_schema, input_prompt, generated_query, result_output])
if __name__ == "__main__":
demo.launch()