Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,033 Bytes
4aef500 c27c631 4aef500 6bf10a4 4aef500 c27c631 4aef500 c27c631 4aef500 6bf10a4 c27c631 4aef500 c27c631 4aef500 c27c631 6bf10a4 4aef500 6bf10a4 4aef500 6bf10a4 4aef500 6bf10a4 4aef500 6bf10a4 4aef500 c27c631 4aef500 6bf10a4 4aef500 1d603b6 4aef500 c27c631 4aef500 c27c631 4aef500 c27c631 4aef500 c27c631 4aef500 6bf10a4 4aef500 c27c631 4aef500 6bf10a4 4aef500 c27c631 6bf10a4 4aef500 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import os
import torch
import duckdb
import spaces
import gradio as gr
import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
# Height of the Tabs Text Area
TAB_LINES = 8
# Load Token
md_token = os.getenv('MD_TOKEN')
print('Connecting to DB...')
# Connect to DB
conn = duckdb.connect(f"md:my_db?motherduck_token={md_token}")
if torch.cuda.is_available():
device = torch.device("cuda")
print(f"Using GPU: {torch.cuda.get_device_name(device)}")
else:
device = torch.device("cpu")
print("Using CPU")
print('Loading Model...')
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1")
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type= "nf4")
model = AutoModelForCausalLM.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1", quantization_config=quantization_config,
device_map="auto", torch_dtype=torch.bfloat16)
print('Model Loaded...')
print(f'Model Device: {model.device}')
# Get Databases
def get_databases():
databases = conn.execute("PRAGMA show_databases").fetchall()
return [item[0] for item in databases]
# Get Tables
def get_tables(database):
conn.execute(f"USE {database}")
tables = conn.execute("SHOW TABLES").fetchall()
return [table[0] for table in tables]
# Update Tables
def update_tables(selected_db):
tables = get_tables(selected_db)
return gr.update(choices=tables)
# Get Schema
def get_schema(table):
conn.execute(f"SELECT * FROM '{table}' LIMIT 1;")
result = conn.sql(f"SELECT sql FROM duckdb_tables() where table_name ='{table}';").df()
ddl_create = result.iloc[0,0]
return ddl_create
# Get Prompt
def get_prompt(schema, query_input):
text = f"""
### Instruction:
Your task is to generate valid duckdb SQL query to answer the following question.
### Input:
Here is the database schema that the SQL query will run on:
{schema}
### Question:
{query_input}
### Response (use duckdb shorthand if possible):
"""
return text
# Generate SQL
@spaces.GPU(duration=120)
def text2sql(table, query_input):
if table is None:
return {
table_schema: "",
input_prompt: "",
generated_query: "",
result_output:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {e}"}])
}
schema = get_schema(table)
print(f'Schema Generated...')
prompt = get_prompt(schema, query_input)
print(f'Prompt Generated...')
try:
print(f'Generating SQL... {model.device}')
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
input_token_len = input_ids.shape[1]
outputs = model.generate(input_ids.to(model.device), max_new_tokens=1024)
result = tokenizer.decode(outputs[0][input_token_len:], skip_special_tokens=True)
print('SQL Generated...')
except Exception as e:
return {
table_schema: schema,
input_prompt: prompt,
generated_query: "",
result_output:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {e}"}])
}
try:
query_result = conn.sql(result).df()
except Exception as e:
return {
table_schema: schema,
input_prompt: prompt,
generated_query: result,
result_output:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {e}"}])
}
return {
table_schema: schema,
input_prompt: prompt,
generated_query: result,
result_output:query_result
}
# Load Databases Names
databases = get_databases()
# Custom CSS styling
custom_css = """
.gradio-container {
background-color: #f0f4f8;
}
.logo {
max-width: 200px;
margin: 20px auto;
display: block;
}
.gr-button {
background-color: #4a90e2 !important;
}
.gr-button:hover {
background-color: #3a7bc8 !important;
}
"""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css) as demo:
gr.Image("logo.png", label=None, show_label=False, container=False, height=100)
gr.Markdown("""
<div style='text-align: center;'>
<strong style='font-size: 36px;'>Datajoi SQL Agent</strong>
<br>
<span style='font-size: 20px;'>Generate and Run SQL queries based on a given text for the dataset.</span>
</div>
""")
with gr.Row():
with gr.Column(scale=1, variant='panel'):
database_dropdown = gr.Dropdown(choices=databases, label="Select Database", interactive=True)
tables_dropdown = gr.Dropdown(choices=[], label="Available Tables", value=None)
with gr.Column(scale=2):
query_input = gr.Textbox(lines=5, label="Text Query", placeholder="Enter your text query here...")
generate_query_button = gr.Button("Run Query", variant="primary")
with gr.Tabs():
with gr.Tab("Result"):
result_output = gr.DataFrame(label="Query Results", value=[], interactive=False)
with gr.Tab("SQL Query"):
generated_query = gr.Textbox(lines=TAB_LINES, label="Generated SQL Query", value="", interactive=False)
with gr.Tab("Prompt"):
input_prompt = gr.Textbox(lines=TAB_LINES, label="Input Prompt", value="", interactive=False)
with gr.Tab("Schema"):
table_schema = gr.Textbox(lines=TAB_LINES, label="Schema", value="", interactive=False)
database_dropdown.change(update_tables, inputs=database_dropdown, outputs=tables_dropdown)
generate_query_button.click(text2sql, inputs=[tables_dropdown, query_input], outputs=[table_schema, input_prompt, generated_query, result_output])
if __name__ == "__main__":
demo.launch()
|