Mustehson
LLM Response
b67984f
raw
history blame
14 kB
import os
import json
import duckdb
import gradio as gr
import pandas as pd
import pandera as pa
from pandera import Column
import ydata_profiling as pp
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from langsmith import traceable
from langchain import hub
import warnings
import dlt
warnings.filterwarnings("ignore", category=DeprecationWarning)
# Height of the Tabs Text Area
TAB_LINES = 8
#----------CONNECT TO DATABASE----------
md_token = os.getenv('MD_TOKEN')
conn = duckdb.connect(f"md:my_db?motherduck_token={md_token}", read_only=True)
#---------------------------------------
#-------LOAD HUGGINGFACE-------
models = ["Qwen/Qwen2.5-72B-Instruct","meta-llama/Meta-Llama-3-70B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct"]
model_loaded = False
for model in models:
try:
endpoint = HuggingFaceEndpoint(repo_id=model, max_new_tokens=8192)
info = endpoint.client.get_endpoint_info()
model_loaded = True
break
except Exception as e:
print(f"Error for model {model}: {e}")
continue
llm = ChatHuggingFace(llm=endpoint).bind(max_tokens=8192)
#---------------------------------------
#-----LOAD PROMPT FROM LANCHAIN HUB-----
prompt_autogenerate = hub.pull("autogenerate-rules-testworkflow")
prompt_user_input = hub.pull("usergenerate-rules-testworkflow")
#--------------ALL UTILS----------------
# Get Databases
def get_schemas():
schemas = conn.execute("""
SELECT DISTINCT schema_name
FROM information_schema.schemata
WHERE schema_name NOT IN ('information_schema', 'pg_catalog')
""").fetchall()
return [item[0] for item in schemas]
# Get Tables
def get_tables_names(schema_name):
tables = conn.execute(f"SELECT table_name FROM information_schema.tables WHERE table_schema = '{schema_name}'").fetchall()
return [table[0] for table in tables]
# Update Tables
def update_table_names(schema_name):
tables = get_tables_names(schema_name)
return gr.update(choices=tables)
# def get_data_df(schema):
# print('Getting Dataframe from the Database')
# return conn.sql(f"SELECT * FROM {schema} LIMIT 1000")
@dlt.resource
def fetch_data(schema):
result = conn.sql(f"SELECT * FROM {schema} LIMIT 1000")
while True:
chunk_df = result.fetch_df_chunk(2)
if chunk_df is None or len(chunk_df) == 0:
break
else:
yield chunk_df
def create_pipeline(schema):
dataset_name = schema.split('.')[1]
print("Dataset Name: ", dataset_name)
table_name = schema.split('.')[2]
print("Table Name: ", table_name)
pipeline =dlt.pipeline(
pipeline_name='duckdb_pipeline',
destination='duckdb',
dataset_name= dataset_name,
)
load_info = pipeline.run(fetch_data(schema), table_name = table_name,
write_disposition = "replace")
print(load_info)
return dataset_name + "." + table_name
def load_pipeline(table_name):
_conn = duckdb.connect("duckdb_pipeline.duckdb")
return _conn, _conn.sql(f"SELECT * FROM {table_name} LIMIT 1000").df()
def df_summary(df):
summary = []
for column in df.columns:
if pd.api.types.is_numeric_dtype(df[column]):
summary.append({
"column": column,
"max": df[column].max(),
"min": df[column].min(),
"count": df[column].count(),
"nunique": df[column].nunique(),
"dtype": str(df[column].dtype),
"top": None
})
elif pd.api.types.is_categorical_dtype(df[column]) or pd.api.types.is_object_dtype(df[column]):
top_value = df[column].mode().iloc[0] if not df[column].mode().empty else None
summary.append({
"column": column,
"max": None,
"min": None,
"count": df[column].count(),
"nunique": df[column].nunique(),
"dtype": str(df[column].dtype),
"top": top_value
})
summary_df = pd.DataFrame(summary)
return summary_df.reset_index(drop=True)
def format_prompt(df):
summary = df_summary(df)
return prompt_autogenerate.format_prompt(data=df.head().to_json(orient='records'),
summary=summary.to_json(orient='records'))
def format_user_prompt(df):
return prompt_user_input.format_prompt(data=df.head().to_json(orient='records'))
def process_inputs(inputs) :
return {'input_query': inputs['messages'].to_messages()[1]}
@traceable(process_inputs=process_inputs)
def run_llm(messages):
try:
response = llm.invoke(messages)
print(response.content.replace("```", "'''").replace("json", ""))
tests = json.loads(response.content.replace("```", "").replace("json", ""))
except Exception as e:
return e
return tests
# Get Schema
def get_table_schema(table):
result = conn.sql(f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';").df()
ddl_create = result.iloc[0,0]
parent_database = result.iloc[0,1]
schema_name = result.iloc[0,2]
full_path = f"{parent_database}.{schema_name}.{table}"
if schema_name != "main":
old_path = f"{schema_name}.{table}"
else:
old_path = table
ddl_create = ddl_create.replace(old_path, full_path)
return full_path
def describe(df):
numerical_info = pd.DataFrame()
categorical_info = pd.DataFrame()
if len(df.select_dtypes(include=['number']).columns) >= 1:
numerical_info = df.select_dtypes(include=['number']).describe().T.reset_index()
numerical_info.rename(columns={'index': 'column'}, inplace=True)
if len(df.select_dtypes(include=['object']).columns) >= 1:
categorical_info = df.select_dtypes(include=['object']).describe().T.reset_index()
categorical_info.rename(columns={'index': 'column'}, inplace=True)
return numerical_info, categorical_info
def validate_pandera(tests, df):
validation_results = []
for test in tests:
column_name = test['column_name']
try:
rule = eval(test['pandera_rule'])
validated_column = rule(df[[column_name]])
validation_results.append({
"Columns": column_name,
"Result": "✅ Pass"
})
except Exception as e:
validation_results.append({
"Columns": column_name,
"Result": f"❌ Fail - {str(e)}"
})
return pd.DataFrame(validation_results)
def statistics(df):
profile = pp.ProfileReport(df)
report_dict = profile.get_description()
description, alerts = report_dict.table, report_dict.alerts
# Statistics
mapping = {
'n': 'Number of observations',
'n_var': 'Number of variables',
'n_cells_missing': 'Number of cells missing',
'n_vars_with_missing': 'Number of columns with missing data',
'n_vars_all_missing': 'Columns with all missing data',
'p_cells_missing': 'Missing cells (%)',
'n_duplicates': 'Duplicated rows',
'p_duplicates': 'Duplicated rows (%)',
}
updated_data = {mapping.get(k, k): v for k, v in description.items() if k != 'types'}
# Add flattened types information
if 'Text' in description.get('types', {}):
updated_data['Number of text columns'] = description['types']['Text']
if 'Categorical' in description.get('types', {}):
updated_data['Number of categorical columns'] = description['types']['Categorical']
if 'Numeric' in description.get('types', {}):
updated_data['Number of numeric columns'] = description['types']['Numeric']
if 'DateTime' in description.get('types', {}):
updated_data['Number of datetime columns'] = description['types']['DateTime']
df_statistics = pd.DataFrame(list(updated_data.items()), columns=['Statistic Description', 'Value'])
df_statistics['Value'] = df_statistics['Value'].astype(int)
# Alerts
alerts_list = [(str(alert).replace('[', '').replace(']', ''), alert.alert_type_name) for alert in alerts]
df_alerts = pd.DataFrame(alerts_list, columns=['Data Quality Issue', 'Category'])
return df_statistics, df_alerts
#---------------------------------------
# Main Function
def main(table):
schema = get_table_schema(table)
# Create dlt pipeline
table_name = create_pipeline(schema)
# Load dlt pipeline
connection, df = load_pipeline(table_name)
# df = get_data_df(schema)
df_statistics, df_alerts = statistics(df)
describe_num, describe_cat = describe(df)
messages = format_prompt(df=df)
tests = run_llm(messages)
if isinstance(tests, Exception):
tests = pd.DataFrame([{"error": f"❌ Unable to generate tests. {tests}"}])
return df.head(10), df_statistics, df_alerts, describe_cat, describe_num, tests, pd.DataFrame([])
tests_df = pd.DataFrame(tests)
tests_df.rename(columns={tests_df.columns[0]: 'Column', tests_df.columns[1]: 'Rule Name', tests_df.columns[2]: 'Rules' }, inplace=True)
pandera_results = validate_pandera(tests, df)
connection.close()
return df.head(10), df_statistics, df_alerts, describe_cat, describe_num, tests_df, pandera_results
def user_results(table, text_query):
schema = get_table_schema(table)
# Create dlt pipeline
table_name = create_pipeline(schema)
# Load dlt pipeline
connection, df = load_pipeline(table_name)
messages = format_user_prompt(df=df, user_description=text_query)
print(f'Generated Tests from user input: {tests}')
if isinstance(tests, Exception):
tests = pd.DataFrame([{"error": f"❌ Unable to generate tests. {tests}"}])
return tests, pd.DataFrame([])
tests_df = pd.DataFrame(tests)
tests_df.rename(columns={tests_df.columns[0]: 'Column', tests_df.columns[1]: 'Rule Name', tests_df.columns[2]: 'Rules' }, inplace=True)
pandera_results = validate_pandera(tests, df)
connection.close()
return tests_df, pandera_results
# Custom CSS styling
custom_css = """
print('Validated Tests with Pandera')
.gradio-container {
background-color: #f0f4f8;
}
.logo {
max-width: 200px;
margin: 20px auto;
display: block;
}
.gr-button {
background-color: #4a90e2 !important;
}
.gr-button:hover {
background-color: #3a7bc8 !important;
}
"""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css) as demo:
gr.Image("logo.png", label=None, show_label=False, container=False, height=100)
gr.Markdown("""
<div style='text-align: center;'>
<strong style='font-size: 36px;'>Dataset Test Workflow</strong>
<br>
<span style='font-size: 20px;'>Implement and Automate Data Validation Processes.</span>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
schema_dropdown = gr.Dropdown(choices=get_schemas(), label="Select Schema", interactive=True)
tables_dropdown = gr.Dropdown(choices=[], label="Available Tables", value=None)
with gr.Row():
generate_result = gr.Button("Validate Data", variant="primary")
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("Description"):
with gr.Row():
with gr.Column():
data_description = gr.DataFrame(label="Data Description", value=[], interactive=False)
with gr.Row():
with gr.Column():
describe_cat = gr.DataFrame(label="Categorical Information", value=[], interactive=False)
with gr.Column():
describe_num = gr.DataFrame(label="Numerical Information", value=[], interactive=False)
with gr.Tab("Alerts"):
data_alerts = gr.DataFrame(label="Alerts", value=[], interactive=False)
with gr.Tab("Rules & Validations"):
tests_output = gr.DataFrame(label="Validation Rules", value=[], interactive=False)
test_result_output = gr.DataFrame(label="Validation Result", value=[], interactive=False)
with gr.Tab("Data"):
result_output = gr.DataFrame(label="Dataframe (10 Rows)", value=[], interactive=False)
with gr.Tab('Text to Validation'):
with gr.Row():
query_input = gr.Textbox(lines=5, label="Text Query", placeholder="Enter Text Query to Generate Validation e.g. Validate that the incident_zip column contains valid 5-digit ZIP codes.")
with gr.Row():
with gr.Column():
pass
with gr.Column(scale=1, min_width=50):
user_generate_result = gr.Button("Validate Data", variant="primary" )
with gr.Row():
with gr.Column():
query_tests = gr.DataFrame(label="Validation Rules", value=[], interactive=False)
with gr.Column():
query_result = gr.DataFrame(label="Validation Result", value=[], interactive=False)
schema_dropdown.change(update_table_names, inputs=schema_dropdown, outputs=tables_dropdown)
generate_result.click(main, inputs=[tables_dropdown], outputs=[result_output, data_description, data_alerts, describe_cat, describe_num, tests_output, test_result_output])
user_generate_result.click(user_results, inputs=[tables_dropdown, query_input], outputs=[query_tests, query_result])
if __name__ == "__main__":
demo.launch(debug=True)