Mustehson
Initial Commit
a8d09b2
raw
history blame
8.8 kB
import os
import json
import duckdb
import gradio as gr
import pandas as pd
import pandera as pa
from pandera import Column
import ydata_profiling as pp
from huggingface_hub import InferenceClient
from prompt import PROMPT_PANDERA
# Height of the Tabs Text Area
TAB_LINES = 8
# Load Token
md_token = os.getenv('MD_TOKEN')
os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN')
INPUT_PROMPT = '''
Here is the frist few samples of data:
<Sample Data>
{data}
</Sample Data<>
'''
print('Connecting to DB...')
# Connect to DB
conn = duckdb.connect(f"md:my_db?motherduck_token={md_token}", read_only=True)
client = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")
# Get Databases
def get_schemas():
schemas = conn.execute("""
SELECT DISTINCT schema_name
FROM information_schema.schemata
WHERE schema_name NOT IN ('information_schema', 'pg_catalog')
""").fetchall()
return [item[0] for item in schemas]
# Get Tables
def get_tables_names(schema_name):
tables = conn.execute(f"SELECT table_name FROM information_schema.tables WHERE table_schema = '{schema_name}'").fetchall()
return [table[0] for table in tables]
# Update Tables
def update_table_names(schema_name):
tables = get_tables_names(schema_name)
return gr.update(choices=tables)
def get_data_df(schema):
print('Getting Dataframe from the Database')
return conn.sql(f"SELECT * FROM {schema} LIMIT 1000").df()
def run_llm(df):
messages=[
{"role": "system", "content": PROMPT_PANDERA},
{"role": "user", "content": INPUT_PROMPT.format(data=df.head().to_json(orient='records'))},
]
try:
response = client.chat_completion(messages, max_tokens=1024)
print(response.choices[0].message.content)
tests = json.loads(response.choices[0].message.content)
except Exception as e:
return e
return tests
# Get Schema
def get_table_schema(table):
result = conn.sql(f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';").df()
ddl_create = result.iloc[0,0]
parent_database = result.iloc[0,1]
schema_name = result.iloc[0,2]
full_path = f"{parent_database}.{schema_name}.{table}"
if schema_name != "main":
old_path = f"{schema_name}.{table}"
else:
old_path = table
ddl_create = ddl_create.replace(old_path, full_path)
return full_path
def describe(df):
numerical_info = df.select_dtypes(include=['number']).describe().T.reset_index()
numerical_info.rename(columns={'index': 'column'}, inplace=True)
categorical_info = df.select_dtypes(include=['object']).describe().T.reset_index()
categorical_info.rename(columns={'index': 'column'}, inplace=True)
return numerical_info, categorical_info
def validate_pandera(tests, df):
validation_results = []
# Loop through each test rule and validate each column separately
for test in tests:
column_name = test['column_name']
rule = eval(test['pandera_rule']) # Evaluate the Pandera column rule
try:
# Apply the rule to the column and validate
validated_column = rule(df[[column_name]]) # Validate the specific column
validation_results.append({
"Columns": column_name,
"Result": "✅ Pass"
})
except Exception as e:
# If validation fails, catch the exception and mark the column as 'Fail'
validation_results.append({
"Columns": column_name,
"Result": f"❌ Fail - {str(e)}"
})
return pd.DataFrame(validation_results)
def statistics(df):
profile = pp.ProfileReport(df)
report_dict = profile.get_description()
description, alerts = report_dict.table, report_dict.alerts
# Statistics
mapping = {
'n': 'Number of observations',
'n_var': 'Number of variables',
'n_cells_missing': 'Number of cells missing',
'n_vars_with_missing': 'Number of columns with missing data',
'n_vars_all_missing': 'Columns with all missing data',
'p_cells_missing': 'Missing cells (%)',
'n_duplicates': 'Duplicated rows',
'p_duplicates': 'Duplicated rows (%)',
}
updated_data = {mapping.get(k, k): v for k, v in description.items() if k != 'types'}
# Add flattened types information
if 'Text' in description.get('types', {}):
updated_data['Number of text columns'] = description['types']['Text']
if 'Categorical' in description.get('types', {}):
updated_data['Number of categorical columns'] = description['types']['Categorical']
if 'Numeric' in description.get('types', {}):
updated_data['Number of numeric columns'] = description['types']['Numeric']
if 'DateTime' in description.get('types', {}):
updated_data['Number of datetime columns'] = description['types']['DateTime']
df_statistics = pd.DataFrame(list(updated_data.items()), columns=['Statistic Description', 'Value'])
df_statistics['Value'] = df_statistics['Value'].astype(int)
# Alerts
alerts_list = [(str(alert).replace('[', '').replace(']', ''), alert.alert_type_name) for alert in alerts]
df_alerts = pd.DataFrame(alerts_list, columns=['Data Quality Issue', 'Category'])
return df_statistics, df_alerts
# Main Function
def main(table):
schema = get_table_schema(table)
df = get_data_df(schema)
df_statistics, df_alerts = statistics(df)
describe_cat, describe_num = describe(df)
tests = run_llm(df)
print(tests)
if isinstance(tests, Exception):
tests = pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {tests}"}])
return df.head(10), df_statistics, df_alerts, describe_cat, describe_num, tests, pd.DataFrame([])
tests_df = pd.DataFrame(tests)
tests_df.rename(columns={tests_df.columns[0]: 'Column', tests_df.columns[1]: 'Rule Name', tests_df.columns[2]: 'Rules' }, inplace=True)
pandera_results = validate_pandera(tests, df)
return df.head(10), df_statistics, df_alerts, describe_cat, describe_num, tests_df, pandera_results
# Custom CSS styling
custom_css = """
.gradio-container {
background-color: #f0f4f8;
}
.logo {
max-width: 200px;
margin: 20px auto;
display: block;
}
.gr-button {
background-color: #4a90e2 !important;
}
.gr-button:hover {
background-color: #3a7bc8 !important;
}
"""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css) as demo:
gr.Image("logo.png", label=None, show_label=False, container=False, height=100)
gr.Markdown("""
<div style='text-align: center;'>
<strong style='font-size: 36px;'>Dataset Test Workflow</strong>
<br>
<span style='font-size: 20px;'>Implement and Automate Data Validation Processes.</span>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
schema_dropdown = gr.Dropdown(choices=get_schemas(), label="Select Schema", interactive=True)
tables_dropdown = gr.Dropdown(choices=[], label="Available Tables", value=None)
with gr.Row():
generate_query_button = gr.Button("Validate Data", variant="primary")
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("Description"):
with gr.Row():
with gr.Column(min_width=220):
data_description = gr.DataFrame(label="Data Description", value=[], interactive=False)
with gr.Row():
with gr.Column(min_width=320):
describe_cat = gr.DataFrame(label="Categorical Information", value=[], interactive=False)
with gr.Column(min_width=320):
describe_num = gr.DataFrame(label="Numerical Information", value=[], interactive=False)
with gr.Tab("Alerts"):
data_alerts = gr.DataFrame(label="Alerts", value=[], interactive=False)
with gr.Tab("Rules & Validations"):
tests_output = gr.DataFrame(label="Validation Rules", value=[], interactive=False)
test_result_output = gr.DataFrame(label="Validation Result", value=[], interactive=False)
with gr.Tab("Data"):
result_output = gr.DataFrame(label="Dataframe (10 Rows)", value=[], interactive=False)
schema_dropdown.change(update_table_names, inputs=schema_dropdown, outputs=tables_dropdown)
generate_query_button.click(main, inputs=[tables_dropdown], outputs=[result_output, data_description, data_alerts, describe_cat, describe_num, tests_output, test_result_output])
if __name__ == "__main__":
demo.launch(debug=True)