import os import json import bcrypt from typing import List from pathlib import Path from langchain_huggingface import HuggingFaceEmbeddings from langchain_huggingface import HuggingFaceEndpoint from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.schema import StrOutputParser from operator import itemgetter from pinecone import Pinecone from langchain_pinecone import PineconeVectorStore from langchain_community.chat_message_histories import ChatMessageHistory #from langchain_google_community import GoogleSearchAPIWrapper from langchain.memory import ConversationBufferMemory from langchain.schema.runnable import Runnable, RunnablePassthrough, RunnableConfig, RunnableLambda from langchain.callbacks.base import BaseCallbackHandler from langchain.chains import ( StuffDocumentsChain, ConversationalRetrievalChain ) #from langchain_core.tracers.context import tracing_v2_enabled #from langchain_core.tools import Tool import chainlit as cl from chainlit.input_widget import TextInput, Select, Switch, Slider #from chainlit.playground.config import add_llm_provider #from chainlit.playground.providers.langchain import LangchainGenericProvider from deep_translator import GoogleTranslator from datetime import timedelta from literalai import AsyncLiteralClient async_literal_client = AsyncLiteralClient(api_key=os.getenv("LITERAL_API_KEY")) @cl.password_auth_callback def auth_callback(username: str, password: str): auth = json.loads(os.environ['CHAINLIT_AUTH_LOGIN']) ident = next(d['ident'] for d in auth if d['ident'] == username) pwd = next(d['pwd'] for d in auth if d['ident'] == username) resultLogAdmin = bcrypt.checkpw(username.encode('utf-8'), bcrypt.hashpw(ident.encode('utf-8'), bcrypt.gensalt())) resultPwdAdmin = bcrypt.checkpw(password.encode('utf-8'), bcrypt.hashpw(pwd.encode('utf-8'), bcrypt.gensalt())) resultRole = next(d['role'] for d in auth if d['ident'] == username) if resultLogAdmin and resultPwdAdmin and resultRole == "admindatapcc": return cl.User( identifier=ident + " : 🧑💼 Admin Datapcc", metadata={"role": "admin", "provider": "credentials"} ) elif resultLogAdmin and resultPwdAdmin and resultRole == "userdatapcc": return cl.User( identifier=ident + " : 🧑🎓 User Datapcc", metadata={"role": "user", "provider": "credentials"} ) @cl.step(type="llm") async def LLModel(): os.environ['HUGGINGFACEHUB_API_TOKEN'] = os.environ['HUGGINGFACEHUB_API_TOKEN'] repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" llm = HuggingFaceEndpoint( repo_id=repo_id, max_new_tokens=5300, temperature=1.0, task="text2text-generation", streaming=True ) #add_llm_provider( # LangchainGenericProvider( # It is important that the id of the provider matches the _llm_type # id=llm._llm_type, # The name is not important. It will be displayed in the UI. # name="Mistral 8x7b Instruct", # This should always be a Langchain llm instance (correctly configured) # llm=llm, # If the LLM works with messages, set this to True # is_chat=True # ) #) return llm @cl.step(type="tool") async def VectorDatabase(categorie): if categorie == "bibliographie-OPP-DGDIN": index_name = "all-venus" embeddings = HuggingFaceEmbeddings() vectorstore = PineconeVectorStore( index_name=index_name, embedding=embeddings, pinecone_api_key=os.getenv('PINECONE_API_KEY') ) elif categorie == "year" or categorie == "videosTC": index_name = "all-jdlp" embeddings = HuggingFaceEmbeddings() vectorstore = PineconeVectorStore( index_name=index_name, embedding=embeddings, pinecone_api_key=os.getenv('PINECONE_API_KEYJDLP') ) elif categorie == "skills": index_name = "all-skills" embeddings = HuggingFaceEmbeddings() vectorstore = PineconeVectorStore( index_name=index_name, embedding=embeddings, pinecone_api_key=os.getenv('PINECONE_API_KEYSKILLS') ) return vectorstore @cl.step(type="retrieval") async def Retriever(categorie): vectorstore = await VectorDatabase(categorie) if categorie == "bibliographie-OPP-DGDIN": retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 150,"filter": {'categorie': {'$eq': categorie}}}) elif categorie == "year": retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 6,"filter": {'year': {'$gte': 2019}}}) elif categorie == "skills": retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 200,"filter": {'file': {'$eq': 'competences-master-CFA.csv'}}}) elif categorie == "videosTC": retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 200,"filter": {"title": {"$eq": "videos-confinement-timeline"}}}) return retriever @cl.step(type="embedding") async def Search(input, categorie): vectorstore = await VectorDatabase(categorie) results = [] test = [] sources_text = "" sources_offres = "" verbatim_text = "" count = 0 countOffres = 0 if categorie == "bibliographie-OPP-DGDIN": search = vectorstore.similarity_search(input,k=50, filter={"categorie": {"$eq": categorie}}) for i in range(0,len(search)): if search[i].metadata['Lien'] not in test: if count <= 15: count = count + 1 test.append(search[i].metadata['Lien']) sources_text = sources_text + str(count) + ". " + search[i].metadata['Titre'] + ', ' + search[i].metadata['Auteurs'] + ', ' + search[i].metadata['Lien'] + "\n" verbatim_text = verbatim_text + "
" + str(count) + ". " + search[i].metadata['Phrase'] + "
" elif categorie == "year": search = vectorstore.similarity_search(input,k=50, filter={"year": {"$gte": 2019}}) for i in range(0,len(search)): if count <= 15: count = count + 1 sources_text = sources_text + str(count) + ". " + search[i].metadata['title'] + ' (JDLP : ' + str(search[i].metadata['year']) + '), ' + search[i].metadata['author'] + ', https://cipen.univ-gustave-eiffel.fr/fileadmin/CIPEN/OPP/' + search[i].metadata['file'] + "\n" verbatim_text = verbatim_text + "
" + str(count) + ". JDLP : " + search[i].metadata['jdlp'] + "
" + search[i].page_content + "
" elif categorie == "skills": search = vectorstore.similarity_search(input,k=50, filter={"file": {"$eq": 'competences-master-CFA.csv'}}) searchOffres = vectorstore.similarity_search(input,k=50, filter={"file": {"$eq": 'marche-emploi-CFA.csv'}}) for i in range(0,len(search)): if count <= 15: count = count + 1 sources_text = sources_text + str(count) + ". " + search[i].metadata['diplôme'] + ' (année : ' + search[i].metadata['année'] + '), ' + search[i].metadata['domaine'] + ', https://www.francecompetences.fr/recherche/rncp/' + str(search[i].metadata['rncp'])[4:] + "/\n" verbatim_text = verbatim_text + "" + str(count) + ". " + search[i].metadata['diplôme'] + "
" + search[i].page_content + "
" for i in range(0,len(searchOffres)): if countOffres <= 15: countOffres = countOffres + 1 sources_offres = sources_offres + str(countOffres) + ". " + searchOffres[i].metadata['Poste'] + " (type de contrat : " + searchOffres[i].metadata['Contrat'] + ")\n" elif categorie == "videosTC": search = vectorstore.similarity_search(input,k=50, filter={"title": {"$eq": "videos-confinement-timeline"}}) for i in range(0,len(search)): if count <= 17: count = count + 1 timeSeq = search[i].metadata["time"] timeSeqRound = round(timeSeq) time = timedelta(seconds=timeSeqRound) sources_text = sources_text + '' verbatim_text = verbatim_text + "" + str(count) + ". " + search[i].metadata['titre'] + "
🕓 "+ str(time) + " : " + search[i].page_content + "
" results = [sources_text, verbatim_text, sources_offres] return results @cl.on_chat_start async def on_chat_start(): await cl.Message(f"> REVIEWSTREAM").send() #sources_videos = [ # cl.Text(name="Videos", content=""" # # # """, # display="inline") #] #await cl.Message( # content="Vidéos : ", # elements=sources_videos, #).send() res = await cl.AskActionMessage( content=" Hal Archives Ouvertes : Une archive ouverte est un réservoir numérique contenant des documents issus de la recherche scientifique, généralement déposés par leurs auteurs, et permettant au grand public d'y accéder gratuitement et sans contraintes.
Persée : offre un accès libre et gratuit à des collections complètes de publications scientifiques (revues, livres, actes de colloques, publications en série, sources primaires, etc.) associé à une gamme d'outils de recherche et d'exploitation.