dat-ai commited on
Commit
e206cd3
Β·
1 Parent(s): 221fc27

add the first chatbot

Browse files
Files changed (2) hide show
  1. app.py +180 -0
  2. requirements.txt +12 -0
app.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from langchain_huggingface import HuggingFaceEndpoint
3
+ import streamlit as st
4
+ from langchain_core.prompts import PromptTemplate
5
+ from langchain_core.output_parsers import StrOutputParser
6
+ from os.path import join, dirname
7
+ from dotenv import load_dotenv
8
+
9
+ # Load the environment variables
10
+ dotenv_path = join(dirname(__file__), ".env")
11
+ load_dotenv(dotenv_path)
12
+
13
+
14
+ list_model=["mistralai/Mistral-7B-Instruct-v0.3",
15
+ "allenai/Llama-3.1-Tulu-3-8B",
16
+ "Qwen/Qwen2.5-1.5B-Instruct"]
17
+
18
+ def get_llm_hf_inference(model_id="mistralai/Mistral-7B-Instruct-v0.3", max_new_tokens=128, temperature=0.1):
19
+ """
20
+ Returns a language model for HuggingFace inference.
21
+
22
+ Parameters:
23
+ - model_id (str): The ID of the HuggingFace model repository.
24
+ - max_new_tokens (int): The maximum number of new tokens to generate.
25
+ - temperature (float): The temperature for sampling from the model.
26
+
27
+ Returns:
28
+ - llm (HuggingFaceEndpoint): The language model for HuggingFace inference.
29
+ """
30
+ llm = HuggingFaceEndpoint(
31
+ repo_id=model_id,
32
+ max_new_tokens=max_new_tokens,
33
+ temperature=temperature,
34
+ token = os.environ["HF_TOKEN"]
35
+ )
36
+ return llm
37
+
38
+ # Configure the Streamlit app
39
+ st.set_page_config(page_title="Chatbot HF", page_icon="πŸ€—")
40
+ st.title("Personal ChatBot")
41
+ st.markdown(f"*This is a simple chatbot to generate responses to your text input.*")
42
+
43
+ # Initialize session state for avatars
44
+ if "avatars" not in st.session_state:
45
+ st.session_state.avatars = {'user': None, 'assistant': None}
46
+
47
+ # Initialize session state for user text input
48
+ if 'user_text' not in st.session_state:
49
+ st.session_state.user_text = None
50
+
51
+ # Initialize session state for model parameters
52
+ if "max_response_length" not in st.session_state:
53
+ st.session_state.max_response_length = 256
54
+
55
+ if "system_message" not in st.session_state:
56
+ st.session_state.system_message = "friendly AI conversing with a human user"
57
+
58
+ if "starter_message" not in st.session_state:
59
+ st.session_state.starter_message = "Hello, there! How can I help you today?"
60
+
61
+
62
+ # Sidebar for settings
63
+ with st.sidebar:
64
+ st.header("System Settings")
65
+
66
+ st.session_state.system_message = st.text_area(
67
+ "System Message", value="You are a friendly AI conversing with a human user."
68
+ )
69
+ st.session_state.starter_message = st.text_area(
70
+ 'First AI Message', value="Hello, there! How can I help you today?"
71
+ )
72
+
73
+
74
+ model_id = st.selectbox("Select Model", list_model)
75
+
76
+ # Model Settings
77
+ st.session_state.max_response_length = st.number_input(
78
+ "Max Response Length", value=128
79
+ )
80
+
81
+ temperature = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.1, step=0.01)
82
+ # Avatar Selection
83
+ st.markdown("*Select Avatars:*")
84
+ col1, col2 = st.columns(2)
85
+ with col1:
86
+ st.session_state.avatars['assistant'] = st.selectbox(
87
+ "AI Avatar", options=["πŸ€—", "πŸ’¬", "πŸ€–"], index=0
88
+ )
89
+ with col2:
90
+ st.session_state.avatars['user'] = st.selectbox(
91
+ "User Avatar", options=["πŸ‘€", "πŸ‘±β€β™‚οΈ", "πŸ‘¨πŸΎ", "πŸ‘©", "πŸ‘§πŸΎ"], index=0
92
+ )
93
+ # Reset Chat History
94
+ reset_history = st.button("Reset Chat History")
95
+
96
+ # Initialize or reset chat history
97
+ if "chat_history" not in st.session_state or reset_history:
98
+ st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}]
99
+
100
+ def get_response(system_message, chat_history, user_text,
101
+ eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
102
+ """
103
+ Generates a response from the chatbot model.
104
+
105
+ Args:
106
+ system_message (str): The system message for the conversation.
107
+ chat_history (list): The list of previous chat messages.
108
+ user_text (str): The user's input text.
109
+ model_id (str, optional): The ID of the HuggingFace model to use.
110
+ eos_token_id (list, optional): The list of end-of-sentence token IDs.
111
+ max_new_tokens (int, optional): The maximum number of new tokens to generate.
112
+ get_llm_hf_kws (dict, optional): Additional keyword arguments for the get_llm_hf function.
113
+
114
+ Returns:
115
+ tuple: A tuple containing the generated response and the updated chat history.
116
+ """
117
+ # Set up the model
118
+ hf = get_llm_hf_inference(model_id=model_id, max_new_tokens=max_new_tokens, temperature=temperature)
119
+
120
+ # Create the prompt template
121
+ prompt = PromptTemplate.from_template(
122
+ (
123
+ "[INST] {system_message}"
124
+ "\nCurrent Conversation:\n{chat_history}\n\n"
125
+ "\nUser: {user_text}.\n [/INST]"
126
+ "\nAI:"
127
+ )
128
+ )
129
+ # Make the chain and bind the prompt
130
+ chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
131
+
132
+ # Generate the response
133
+ response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
134
+ response = response.split("AI:")[-1]
135
+
136
+ # Update the chat history
137
+ chat_history.append({'role': 'user', 'content': user_text})
138
+ chat_history.append({'role': 'assistant', 'content': response})
139
+ return response, chat_history
140
+
141
+ # Chat interface
142
+ chat_interface = st.container(border=True)
143
+ with chat_interface:
144
+ output_container = st.container()
145
+ st.session_state.user_text = st.chat_input(placeholder="Enter your text here.")
146
+
147
+ # Display chat messages
148
+ with output_container:
149
+ # For every message in the history
150
+ for message in st.session_state.chat_history:
151
+ # Skip the system message
152
+ if message['role'] == 'system':
153
+ continue
154
+
155
+ # Display the chat message using the correct avatar
156
+ with st.chat_message(message['role'],
157
+ avatar=st.session_state['avatars'][message['role']]):
158
+ st.markdown(message['content'])
159
+
160
+ # When the user enter new text:
161
+ if st.session_state.user_text:
162
+
163
+ # Display the user's new message immediately
164
+ with st.chat_message("user",
165
+ avatar=st.session_state.avatars['user']):
166
+ st.markdown(st.session_state.user_text)
167
+
168
+ # Display a spinner status bar while waiting for the response
169
+ with st.chat_message("assistant",
170
+ avatar=st.session_state.avatars['assistant']):
171
+
172
+ with st.spinner("Thinking..."):
173
+ # Call the Inference API with the system_prompt, user text, and history
174
+ response, st.session_state.chat_history = get_response(
175
+ system_message=st.session_state.system_message,
176
+ user_text=st.session_state.user_text,
177
+ chat_history=st.session_state.chat_history,
178
+ max_new_tokens=st.session_state.max_response_length,
179
+ )
180
+ st.markdown(response)
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ langchain==0.3.16
2
+ langchain-community==0.3.16
3
+ langchain-core==0.3.32
4
+ langchain-huggingface==0.1.2
5
+ langchain-text-splitters==0.3.5
6
+ torch==2.5.1
7
+ langsmith==0.3.2
8
+ transformers==4.48.1
9
+ tokenizers==0.21.0
10
+ huggingface-hub==0.28.0
11
+ numpy==1.24.2
12
+ pandas==2.2.3