finalf0 commited on
Commit
7f6db76
·
1 Parent(s): 1f5e401

Add app.py

Browse files
Files changed (1) hide show
  1. app.py +260 -0
app.py ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # encoding: utf-8
3
+ import gradio as gr
4
+ from PIL import Image
5
+ import traceback
6
+ import re
7
+ import torch
8
+ import argparse
9
+ from transformers import AutoModel, AutoTokenizer
10
+
11
+ # README, How to run demo on different devices
12
+ # For Nvidia GPUs support BF16 (like A100, H100, RTX3090)
13
+ # python web_demo.py --device cuda --dtype bf16
14
+
15
+ # For Nvidia GPUs do NOT support BF16 (like V100, T4, RTX2080)
16
+ # python web_demo.py --device cuda --dtype fp16
17
+
18
+ # For Mac with MPS (Apple silicon or AMD GPUs).
19
+ # PYTORCH_ENABLE_MPS_FALLBACK=1 python web_demo.py --device mps --dtype fp16
20
+
21
+ # Argparser
22
+ parser = argparse.ArgumentParser(description='demo')
23
+ parser.add_argument('--device', type=str, default='cuda', help='cuda or mps')
24
+ parser.add_argument('--dtype', type=str, default='bf16', help='bf16 or fp16')
25
+ args = parser.parse_args()
26
+ device = args.device
27
+ assert device in ['cuda', 'mps']
28
+ if args.dtype == 'bf16':
29
+ dtype = torch.bfloat16
30
+ else:
31
+ dtype = torch.float16
32
+
33
+ # Load model
34
+ model_path = 'openbmb/MiniCPM-V-2'
35
+ model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(dtype=torch.bfloat16)
36
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
37
+
38
+ model = model.to(device=device, dtype=dtype)
39
+ model.eval()
40
+
41
+
42
+
43
+ ERROR_MSG = "Error, please retry"
44
+ model_name = 'MiniCPM-V 2.0'
45
+
46
+ form_radio = {
47
+ 'choices': ['Beam Search', 'Sampling'],
48
+ #'value': 'Beam Search',
49
+ 'value': 'Sampling',
50
+ 'interactive': True,
51
+ 'label': 'Decode Type'
52
+ }
53
+ # Beam Form
54
+ num_beams_slider = {
55
+ 'minimum': 0,
56
+ 'maximum': 5,
57
+ 'value': 3,
58
+ 'step': 1,
59
+ 'interactive': True,
60
+ 'label': 'Num Beams'
61
+ }
62
+ repetition_penalty_slider = {
63
+ 'minimum': 0,
64
+ 'maximum': 3,
65
+ 'value': 1.2,
66
+ 'step': 0.01,
67
+ 'interactive': True,
68
+ 'label': 'Repetition Penalty'
69
+ }
70
+ repetition_penalty_slider2 = {
71
+ 'minimum': 0,
72
+ 'maximum': 3,
73
+ 'value': 1.05,
74
+ 'step': 0.01,
75
+ 'interactive': True,
76
+ 'label': 'Repetition Penalty'
77
+ }
78
+ max_new_tokens_slider = {
79
+ 'minimum': 1,
80
+ 'maximum': 4096,
81
+ 'value': 1024,
82
+ 'step': 1,
83
+ 'interactive': True,
84
+ 'label': 'Max New Tokens'
85
+ }
86
+
87
+ top_p_slider = {
88
+ 'minimum': 0,
89
+ 'maximum': 1,
90
+ 'value': 0.8,
91
+ 'step': 0.05,
92
+ 'interactive': True,
93
+ 'label': 'Top P'
94
+ }
95
+ top_k_slider = {
96
+ 'minimum': 0,
97
+ 'maximum': 200,
98
+ 'value': 100,
99
+ 'step': 1,
100
+ 'interactive': True,
101
+ 'label': 'Top K'
102
+ }
103
+ temperature_slider = {
104
+ 'minimum': 0,
105
+ 'maximum': 2,
106
+ 'value': 0.7,
107
+ 'step': 0.05,
108
+ 'interactive': True,
109
+ 'label': 'Temperature'
110
+ }
111
+
112
+
113
+ def create_component(params, comp='Slider'):
114
+ if comp == 'Slider':
115
+ return gr.Slider(
116
+ minimum=params['minimum'],
117
+ maximum=params['maximum'],
118
+ value=params['value'],
119
+ step=params['step'],
120
+ interactive=params['interactive'],
121
+ label=params['label']
122
+ )
123
+ elif comp == 'Radio':
124
+ return gr.Radio(
125
+ choices=params['choices'],
126
+ value=params['value'],
127
+ interactive=params['interactive'],
128
+ label=params['label']
129
+ )
130
+ elif comp == 'Button':
131
+ return gr.Button(
132
+ value=params['value'],
133
+ interactive=True
134
+ )
135
+
136
+
137
+ def chat(img, msgs, ctx, params=None, vision_hidden_states=None):
138
+ default_params = {"num_beams":3, "repetition_penalty": 1.2, "max_new_tokens": 1024}
139
+ if params is None:
140
+ params = default_params
141
+ if img is None:
142
+ return -1, "Error, invalid image, please upload a new image", None, None
143
+ try:
144
+ image = img.convert('RGB')
145
+ answer, context, _ = model.chat(
146
+ image=image,
147
+ msgs=msgs,
148
+ context=None,
149
+ tokenizer=tokenizer,
150
+ **params
151
+ )
152
+ res = re.sub(r'(<box>.*</box>)', '', answer)
153
+ res = res.replace('<ref>', '')
154
+ res = res.replace('</ref>', '')
155
+ res = res.replace('<box>', '')
156
+ answer = res.replace('</box>', '')
157
+ return -1, answer, None, None
158
+ except Exception as err:
159
+ print(err)
160
+ traceback.print_exc()
161
+ return -1, ERROR_MSG, None, None
162
+
163
+
164
+ def upload_img(image, _chatbot, _app_session):
165
+ image = Image.fromarray(image)
166
+
167
+ _app_session['sts']=None
168
+ _app_session['ctx']=[]
169
+ _app_session['img']=image
170
+ _chatbot.append(('', 'Image uploaded successfully, you can talk to me now'))
171
+ return _chatbot, _app_session
172
+
173
+
174
+ def respond(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature):
175
+ if _app_cfg.get('ctx', None) is None:
176
+ _chat_bot.append((_question, 'Please upload an image to start'))
177
+ return '', _chat_bot, _app_cfg
178
+
179
+ _context = _app_cfg['ctx'].copy()
180
+ if _context:
181
+ _context.append({"role": "user", "content": _question})
182
+ else:
183
+ _context = [{"role": "user", "content": _question}]
184
+ print('<User>:', _question)
185
+
186
+ if params_form == 'Beam Search':
187
+ params = {
188
+ 'sampling': False,
189
+ 'num_beams': num_beams,
190
+ 'repetition_penalty': repetition_penalty,
191
+ "max_new_tokens": 896
192
+ }
193
+ else:
194
+ params = {
195
+ 'sampling': True,
196
+ 'top_p': top_p,
197
+ 'top_k': top_k,
198
+ 'temperature': temperature,
199
+ 'repetition_penalty': repetition_penalty_2,
200
+ "max_new_tokens": 896
201
+ }
202
+ code, _answer, _, sts = chat(_app_cfg['img'], _context, None, params)
203
+ print('<Assistant>:', _answer)
204
+
205
+ _context.append({"role": "assistant", "content": _answer})
206
+ _chat_bot.append((_question, _answer))
207
+ if code == 0:
208
+ _app_cfg['ctx']=_context
209
+ _app_cfg['sts']=sts
210
+ return '', _chat_bot, _app_cfg
211
+
212
+
213
+ def regenerate_button_clicked(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature):
214
+ if len(_chat_bot) <= 1:
215
+ _chat_bot.append(('Regenerate', 'No question for regeneration.'))
216
+ return '', _chat_bot, _app_cfg
217
+ elif _chat_bot[-1][0] == 'Regenerate':
218
+ return '', _chat_bot, _app_cfg
219
+ else:
220
+ _question = _chat_bot[-1][0]
221
+ _chat_bot = _chat_bot[:-1]
222
+ _app_cfg['ctx'] = _app_cfg['ctx'][:-2]
223
+ return respond(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature)
224
+
225
+
226
+
227
+ with gr.Blocks() as demo:
228
+ with gr.Row():
229
+ with gr.Column(scale=1, min_width=300):
230
+ params_form = create_component(form_radio, comp='Radio')
231
+ with gr.Accordion("Beam Search") as beams_according:
232
+ num_beams = create_component(num_beams_slider)
233
+ repetition_penalty = create_component(repetition_penalty_slider)
234
+ with gr.Accordion("Sampling") as sampling_according:
235
+ top_p = create_component(top_p_slider)
236
+ top_k = create_component(top_k_slider)
237
+ temperature = create_component(temperature_slider)
238
+ repetition_penalty_2 = create_component(repetition_penalty_slider2)
239
+ regenerate = create_component({'value': 'Regenerate'}, comp='Button')
240
+ with gr.Column(scale=3, min_width=500):
241
+ app_session = gr.State({'sts':None,'ctx':None,'img':None})
242
+ bt_pic = gr.Image(label="Upload an image to start")
243
+ chat_bot = gr.Chatbot(label=f"Chat with {model_name}")
244
+ txt_message = gr.Textbox(label="Input text")
245
+
246
+ regenerate.click(
247
+ regenerate_button_clicked,
248
+ [txt_message, chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature],
249
+ [txt_message, chat_bot, app_session]
250
+ )
251
+ txt_message.submit(
252
+ respond,
253
+ [txt_message, chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature],
254
+ [txt_message, chat_bot, app_session]
255
+ )
256
+ bt_pic.upload(lambda: None, None, chat_bot, queue=False).then(upload_img, inputs=[bt_pic,chat_bot,app_session], outputs=[chat_bot,app_session])
257
+
258
+ # launch
259
+ demo.launch(share=False, debug=True, show_api=False, server_port=8080, server_name="0.0.0.0")
260
+