import gradio as gr import spaces from huggingface_hub import InferenceClient import torch from transformers import AutoModelForCausalLM, ChameleonProcessor, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer from threading import Thread from PIL import Image import requests model_path = "facebook/chameleon-7b" # model = ChameleonForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto") # processor = ChameleonProcessor.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto") processor = ChameleonProcessor.from_pretrained(model_path) tokenizer = processor.tokenizer @spaces.GPU def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # messages = [{"role": "system", "content": system_message}] # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # messages.append({"role": "user", "content": message}) response = "" prompt = "I'm very intrigued by this work of art:Please tell me about the artist." image = Image.open(requests.get("https://uploads4.wikiart.org/images/paul-klee/death-for-the-idea-1915.jpg!Large.jpg", stream=True).raw) inputs = processor(prompt, images=[image], return_tensors="pt").to(model.device, dtype=torch.bfloat16) # out = model.generate(**inputs, max_new_tokens=40, do_sample=False) streamer = TextIteratorStreamer(tokenizer) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=20) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() partial_message = "" for new_token in streamer: partial_message += new_token yield partial_message """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, multimodal=True, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()