auth
Browse files
app.py
CHANGED
@@ -11,10 +11,11 @@ import requests
|
|
11 |
model_path = "facebook/chameleon-7b"
|
12 |
# model = ChameleonForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto")
|
13 |
# processor = ChameleonProcessor.from_pretrained(model_path)
|
14 |
-
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto")
|
15 |
model.eval()
|
16 |
-
processor = ChameleonProcessor.from_pretrained(model_path)
|
17 |
tokenizer = processor.tokenizer
|
|
|
18 |
|
19 |
@spaces.GPU(duration=90)
|
20 |
def respond(
|
@@ -38,7 +39,6 @@ def respond(
|
|
38 |
response = ""
|
39 |
|
40 |
prompt = "I'm very intrigued by this work of art:<image>Please tell me about the artist."
|
41 |
-
image = Image.open(requests.get("https://uploads4.wikiart.org/images/paul-klee/death-for-the-idea-1915.jpg!Large.jpg", stream=True).raw)
|
42 |
|
43 |
inputs = processor(prompt, images=[image], return_tensors="pt").to(model.device, dtype=torch.bfloat16)
|
44 |
|
|
|
11 |
model_path = "facebook/chameleon-7b"
|
12 |
# model = ChameleonForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto")
|
13 |
# processor = ChameleonProcessor.from_pretrained(model_path)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto", use_auth_token=True)
|
15 |
model.eval()
|
16 |
+
processor = ChameleonProcessor.from_pretrained(model_path, use_auth_token=True)
|
17 |
tokenizer = processor.tokenizer
|
18 |
+
image = Image.open(requests.get("https://uploads4.wikiart.org/images/paul-klee/death-for-the-idea-1915.jpg!Large.jpg", stream=True).raw)
|
19 |
|
20 |
@spaces.GPU(duration=90)
|
21 |
def respond(
|
|
|
39 |
response = ""
|
40 |
|
41 |
prompt = "I'm very intrigued by this work of art:<image>Please tell me about the artist."
|
|
|
42 |
|
43 |
inputs = processor(prompt, images=[image], return_tensors="pt").to(model.device, dtype=torch.bfloat16)
|
44 |
|