|
import json |
|
import mimetypes |
|
import os |
|
import re |
|
import shutil |
|
import threading |
|
from typing import Optional |
|
from loguru import logger |
|
|
|
import gradio as gr |
|
from dotenv import load_dotenv |
|
|
|
from smolagents import ( |
|
CodeAgent, |
|
HfApiModel, |
|
LiteLLMModel, |
|
Tool, |
|
GoogleSearchTool |
|
) |
|
from smolagents.agent_types import ( |
|
AgentAudio, |
|
AgentImage, |
|
AgentText, |
|
handle_agent_output_types, |
|
) |
|
from smolagents.gradio_ui import stream_to_gradio |
|
|
|
from scripts.text_inspector_tool import TextInspectorTool |
|
from scripts.text_web_browser import ( |
|
ArchiveSearchTool, |
|
FinderTool, |
|
FindNextTool, |
|
PageDownTool, |
|
PageUpTool, |
|
SimpleTextBrowser, |
|
VisitTool, |
|
) |
|
from scripts.visual_qa import visualizer |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AUTHORIZED_IMPORTS = [ |
|
"requests", |
|
"zipfile", |
|
"pandas", |
|
"numpy", |
|
"sympy", |
|
"json", |
|
"bs4", |
|
"pubchempy", |
|
"xml", |
|
"yahoo_finance", |
|
"Bio", |
|
"sklearn", |
|
"scipy", |
|
"pydub", |
|
"PIL", |
|
"chess", |
|
"PyPDF2", |
|
"pptx", |
|
"torch", |
|
"datetime", |
|
"fractions", |
|
"csv", |
|
] |
|
load_dotenv(override=True) |
|
|
|
|
|
append_answer_lock = threading.Lock() |
|
|
|
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"} |
|
|
|
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0" |
|
|
|
BROWSER_CONFIG = { |
|
"viewport_size": 1024 * 5, |
|
"downloads_folder": "downloads_folder", |
|
"request_kwargs": { |
|
"headers": {"User-Agent": user_agent}, |
|
"timeout": 300, |
|
}, |
|
"serpapi_key": os.getenv("SERPAPI_API_KEY"), |
|
} |
|
|
|
os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True) |
|
|
|
model_id = os.getenv("MODEL_ID", "deepseek-ai/DeepSeek-V3") |
|
_ = "" if os.getenv("OPENAI_API_KEY") is None else os.getenv("OPENAI_API_KEY")[:8] + "..." |
|
|
|
if os.getenv("MODEL_ID") and os.getenv("OPENAI_API_BASE"): |
|
logger.debug(f"""using LiteLLMModel: {model_id=}, {os.getenv("OPENAI_API_BASE")=}, os.getenv("OPENAI_API_BASE")={_}""") |
|
model = LiteLLMModel( |
|
|
|
|
|
model_id, |
|
custom_role_conversions=custom_role_conversions, |
|
api_base=os.getenv("OPENAI_API_BASE"), |
|
api_key=os.getenv("OPENAI_API_KEY"), |
|
) |
|
else: |
|
logger.debug(f"""using LiteLLMModel: HfApiModel default model_id=Qwen/Qwen2.5-Coder-32B-Instruct""") |
|
model = HfApiModel( |
|
custom_role_conversions=custom_role_conversions, |
|
) |
|
|
|
text_limit = 20000 |
|
ti_tool = TextInspectorTool(model, text_limit) |
|
|
|
browser = SimpleTextBrowser(**BROWSER_CONFIG) |
|
|
|
WEB_TOOLS = [ |
|
|
|
VisitTool(browser), |
|
PageUpTool(browser), |
|
PageDownTool(browser), |
|
FinderTool(browser), |
|
FindNextTool(browser), |
|
ArchiveSearchTool(browser), |
|
TextInspectorTool(model, text_limit), |
|
] |
|
|
|
|
|
|
|
def create_agent(): |
|
"""Creates a fresh agent instance for each session""" |
|
return CodeAgent( |
|
model=model, |
|
tools=[visualizer] + WEB_TOOLS, |
|
max_steps=10, |
|
verbosity_level=1, |
|
additional_authorized_imports=AUTHORIZED_IMPORTS, |
|
planning_interval=4, |
|
) |
|
|
|
|
|
document_inspection_tool = TextInspectorTool(model, 20000) |
|
|
|
|
|
class GradioUI: |
|
"""A one-line interface to launch your agent in Gradio""" |
|
|
|
def __init__(self, file_upload_folder: str | None = None): |
|
self.file_upload_folder = file_upload_folder |
|
if self.file_upload_folder is not None: |
|
if not os.path.exists(file_upload_folder): |
|
os.mkdir(file_upload_folder) |
|
|
|
def interact_with_agent(self, prompt, messages, session_state): |
|
|
|
if "agent" not in session_state: |
|
session_state["agent"] = create_agent() |
|
|
|
|
|
try: |
|
|
|
has_memory = hasattr(session_state["agent"], "memory") |
|
print(f"Agent has memory: {has_memory}") |
|
if has_memory: |
|
print(f"Memory type: {type(session_state['agent'].memory)}") |
|
|
|
messages.append(gr.ChatMessage(role="user", content=prompt)) |
|
yield messages |
|
|
|
for msg in stream_to_gradio( |
|
session_state["agent"], task=prompt, reset_agent_memory=False |
|
): |
|
messages.append(msg) |
|
yield messages |
|
yield messages |
|
except Exception as e: |
|
print(f"Error in interaction: {str(e)}") |
|
raise |
|
|
|
def upload_file( |
|
self, |
|
file, |
|
file_uploads_log, |
|
allowed_file_types=[ |
|
"application/pdf", |
|
"application/vnd.openxmlformats-officedocument.wordprocessingml.document", |
|
"text/plain", |
|
], |
|
): |
|
""" |
|
Handle file uploads, default allowed types are .pdf, .docx, and .txt |
|
""" |
|
if file is None: |
|
return gr.Textbox("No file uploaded", visible=True), file_uploads_log |
|
|
|
try: |
|
mime_type, _ = mimetypes.guess_type(file.name) |
|
except Exception as e: |
|
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log |
|
|
|
if mime_type not in allowed_file_types: |
|
return gr.Textbox("File type disallowed", visible=True), file_uploads_log |
|
|
|
|
|
original_name = os.path.basename(file.name) |
|
sanitized_name = re.sub( |
|
r"[^\w\-.]", "_", original_name |
|
) |
|
|
|
type_to_ext = {} |
|
for ext, t in mimetypes.types_map.items(): |
|
if t not in type_to_ext: |
|
type_to_ext[t] = ext |
|
|
|
|
|
sanitized_name = sanitized_name.split(".")[:-1] |
|
sanitized_name.append("" + type_to_ext[mime_type]) |
|
sanitized_name = "".join(sanitized_name) |
|
|
|
|
|
file_path = os.path.join( |
|
self.file_upload_folder, os.path.basename(sanitized_name) |
|
) |
|
shutil.copy(file.name, file_path) |
|
|
|
return gr.Textbox( |
|
f"File uploaded: {file_path}", visible=True |
|
), file_uploads_log + [file_path] |
|
|
|
def log_user_message(self, text_input, file_uploads_log): |
|
return ( |
|
text_input |
|
+ ( |
|
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}" |
|
if len(file_uploads_log) > 0 |
|
else "" |
|
), |
|
gr.Textbox( |
|
value="", |
|
interactive=False, |
|
placeholder="Please wait while Steps are getting populated", |
|
), |
|
gr.Button(interactive=False), |
|
) |
|
|
|
def detect_device(self, request: gr.Request): |
|
|
|
|
|
if not request: |
|
return "Unknown device" |
|
|
|
is_mobile_header = request.headers.get("sec-ch-ua-mobile") |
|
if is_mobile_header: |
|
return "Mobile" if "?1" in is_mobile_header else "Desktop" |
|
|
|
|
|
user_agent = request.headers.get("user-agent", "").lower() |
|
mobile_keywords = ["android", "iphone", "ipad", "mobile", "phone"] |
|
|
|
if any(keyword in user_agent for keyword in mobile_keywords): |
|
return "Mobile" |
|
|
|
|
|
platform = request.headers.get("sec-ch-ua-platform", "").lower() |
|
if platform: |
|
if platform in ['"android"', '"ios"']: |
|
return "Mobile" |
|
elif platform in ['"windows"', '"macos"', '"linux"']: |
|
return "Desktop" |
|
|
|
|
|
return "Desktop" |
|
|
|
def launch(self, **kwargs): |
|
with gr.Blocks(theme="ocean", fill_height=True) as demo: |
|
|
|
@gr.render() |
|
def layout(request: gr.Request): |
|
device = self.detect_device(request) |
|
print(f"device - {device}") |
|
|
|
if device == "Desktop": |
|
with gr.Blocks( |
|
fill_height=True, |
|
): |
|
file_uploads_log = gr.State([]) |
|
with gr.Sidebar(): |
|
gr.Markdown("""# open Deep Research - free the AI agents! |
|
|
|
OpenAI just (February 2, 2025) published [Deep Research](https://openai.com/index/introducing-deep-research/), an amazing assistant that can perform deep searches on the web to answer user questions. |
|
|
|
However, their agent has a huge downside: it's not open. So we've started a 24-hour rush to replicate and open-source it. Our (Huggingface's) resulting [open-Deep-Research agent](https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research) took the #1 rank of any open submission on the GAIA leaderboard! ✨ |
|
|
|
You can try a simplified version here that uses `Qwen-Coder-32B` (via smolagnet.HfApiModel) instead of `o1`. Modified: if you set MODEL_ID, OPENAI_API_BASE and OPENAI_API_KEY in the .env or env vars (in hf space these can be set in settings, .env will override env vars), the correspoding model will be used. N.B. if you see errors, it might be because whatever quota is exceeded, clone this space and plug in your own resources and run your own deep-research.<br><br>""") |
|
with gr.Group(): |
|
gr.Markdown("**Your request**", container=True) |
|
text_input = gr.Textbox( |
|
lines=3, |
|
label="Your request", |
|
container=False, |
|
placeholder="Enter your prompt here and press Shift+Enter or press the button", |
|
) |
|
launch_research_btn = gr.Button( |
|
"Run", variant="primary" |
|
) |
|
|
|
|
|
if self.file_upload_folder is not None: |
|
upload_file = gr.File(label="Upload a file") |
|
upload_status = gr.Textbox( |
|
label="Upload Status", |
|
interactive=False, |
|
visible=False, |
|
) |
|
upload_file.change( |
|
self.upload_file, |
|
[upload_file, file_uploads_log], |
|
[upload_status, file_uploads_log], |
|
) |
|
|
|
gr.HTML("<br><br><h4><center>Powered by:</center></h4>") |
|
with gr.Row(): |
|
gr.HTML("""<div style="display: flex; align-items: center; gap: 8px; font-family: system-ui, -apple-system, sans-serif;"> |
|
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png" style="width: 32px; height: 32px; object-fit: contain;" alt="logo"> |
|
<a target="_blank" href="https://github.com/huggingface/smolagents"><b>huggingface/smolagents</b></a> |
|
</div>""") |
|
|
|
|
|
session_state = gr.State( |
|
{} |
|
) |
|
stored_messages = gr.State([]) |
|
chatbot = gr.Chatbot( |
|
label="open-Deep-Research", |
|
type="messages", |
|
avatar_images=( |
|
None, |
|
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png", |
|
), |
|
resizeable=False, |
|
scale=1, |
|
elem_id="my-chatbot", |
|
) |
|
|
|
text_input.submit( |
|
self.log_user_message, |
|
[text_input, file_uploads_log], |
|
[stored_messages, text_input, launch_research_btn], |
|
).then( |
|
self.interact_with_agent, |
|
|
|
[stored_messages, chatbot, session_state], |
|
[chatbot], |
|
).then( |
|
lambda: ( |
|
gr.Textbox( |
|
interactive=True, |
|
placeholder="Enter your prompt here and press the button", |
|
), |
|
gr.Button(interactive=True), |
|
), |
|
None, |
|
[text_input, launch_research_btn], |
|
) |
|
launch_research_btn.click( |
|
self.log_user_message, |
|
[text_input, file_uploads_log], |
|
[stored_messages, text_input, launch_research_btn], |
|
).then( |
|
self.interact_with_agent, |
|
|
|
[stored_messages, chatbot, session_state], |
|
[chatbot], |
|
).then( |
|
lambda: ( |
|
gr.Textbox( |
|
interactive=True, |
|
placeholder="Enter your prompt here and press the button", |
|
), |
|
gr.Button(interactive=True), |
|
), |
|
None, |
|
[text_input, launch_research_btn], |
|
) |
|
|
|
|
|
else: |
|
with gr.Blocks( |
|
fill_height=True, |
|
): |
|
gr.Markdown("""# open Deep Research - free the AI agents! |
|
_Built with [smolagents](https://github.com/huggingface/smolagents)_ |
|
|
|
OpenAI just published [Deep Research](https://openai.com/index/introducing-deep-research/), a very nice assistant that can perform deep searches on the web to answer user questions. |
|
|
|
However, their agent has a huge downside: it's not open. So we've started a 24-hour rush to replicate and open-source it. Our resulting [open-Deep-Research agent](https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research) took the #1 rank of any open submission on the GAIA leaderboard! ✨ |
|
|
|
You can try a simplified version below (uses `Qwen-Coder-32B` instead of `o1`, so much less powerful than the original open-Deep-Research)👇""") |
|
|
|
session_state = gr.State( |
|
{} |
|
) |
|
stored_messages = gr.State([]) |
|
file_uploads_log = gr.State([]) |
|
chatbot = gr.Chatbot( |
|
label="open-Deep-Research", |
|
type="messages", |
|
avatar_images=( |
|
None, |
|
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png", |
|
), |
|
resizeable=True, |
|
scale=1, |
|
) |
|
|
|
if self.file_upload_folder is not None: |
|
upload_file = gr.File(label="Upload a file") |
|
upload_status = gr.Textbox( |
|
label="Upload Status", interactive=False, visible=False |
|
) |
|
upload_file.change( |
|
self.upload_file, |
|
[upload_file, file_uploads_log], |
|
[upload_status, file_uploads_log], |
|
) |
|
text_input = gr.Textbox( |
|
lines=1, |
|
label="Your request", |
|
placeholder="Enter your prompt here and press the button", |
|
) |
|
launch_research_btn = gr.Button( |
|
"Run", |
|
variant="primary", |
|
) |
|
|
|
text_input.submit( |
|
self.log_user_message, |
|
[text_input, file_uploads_log], |
|
[stored_messages, text_input, launch_research_btn], |
|
).then( |
|
self.interact_with_agent, |
|
|
|
[stored_messages, chatbot, session_state], |
|
[chatbot], |
|
).then( |
|
lambda: ( |
|
gr.Textbox( |
|
interactive=True, |
|
placeholder="Enter your prompt here and press the button", |
|
), |
|
gr.Button(interactive=True), |
|
), |
|
None, |
|
[text_input, launch_research_btn], |
|
) |
|
launch_research_btn.click( |
|
self.log_user_message, |
|
[text_input, file_uploads_log], |
|
[stored_messages, text_input, launch_research_btn], |
|
).then( |
|
self.interact_with_agent, |
|
|
|
[stored_messages, chatbot, session_state], |
|
[chatbot], |
|
).then( |
|
lambda: ( |
|
gr.Textbox( |
|
interactive=True, |
|
placeholder="Enter your prompt here and press the button", |
|
), |
|
gr.Button(interactive=True), |
|
), |
|
None, |
|
[text_input, launch_research_btn], |
|
) |
|
|
|
demo.launch(debug=True, **kwargs) |
|
|
|
|
|
GradioUI().launch() |