danschnurp commited on
Commit
ffd7939
·
verified ·
1 Parent(s): 28c63aa

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -16
app.py CHANGED
@@ -85,23 +85,9 @@ def compute_correlations_faiss(index: faiss.IndexFlatIP, dataset,
85
  k = len(dataset) # Search for all books
86
  similarities, I = index.search(emb.astype('float16'), k)
87
 
88
- # # Reduce database and query vectors to 2D for visualization
89
- # pca = PCA(n_components=2)
90
- # reduced_db = pca.fit_transform(data)
91
- # reduced_query = pca.transform(target_vector)
92
- #
93
- # # Scatter plot
94
- # plt.scatter(reduced_db[:, 0], reduced_db[:, 1], label='Database Vectors', alpha=0.5)
95
- # plt.scatter(reduced_query[:, 0], reduced_query[:, 1], label='Query Vectors', marker='X', color='red')
96
- # plt.legend()
97
- # plt.title("PCA Projection of IndexFlatIP Vectors")
98
- # plt.show()
99
-
100
-
101
-
102
  corr_df = pd.DataFrame({
103
- 'book': [dataset.index(i) for i in I[0]],
104
- 'corr': similarities[0]
105
  })
106
  return corr_df.sort_values('corr', ascending=False)
107
 
 
85
  k = len(dataset) # Search for all books
86
  similarities, I = index.search(emb.astype('float16'), k)
87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
  corr_df = pd.DataFrame({
89
+ 'book': [[dataset["Book-Title"][j] for j in list(dataset["Book-Title"])[i]] for i in I[0]],
90
+ 'corr': similarities[0],
91
  })
92
  return corr_df.sort_values('corr', ascending=False)
93