Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -1,202 +1,201 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
|
4 |
-
import pandas as pd
|
5 |
-
import numpy as np
|
6 |
-
|
7 |
-
from typing import List, Tuple
|
8 |
-
import faiss
|
9 |
-
from faiss import write_index, read_index
|
10 |
-
import gradio as gr
|
11 |
-
from fuzzywuzzy import process
|
12 |
-
from pandas import DataFrame
|
13 |
-
from tqdm import tqdm
|
14 |
-
from transformers import BertTokenizerFast, BertModel, AutoTokenizer, AutoModel
|
15 |
-
|
16 |
-
# Global variables to store loaded data
|
17 |
-
dataset = None
|
18 |
-
faiss_index = None
|
19 |
-
normalized_data = None
|
20 |
-
book_titles = None
|
21 |
-
|
22 |
-
|
23 |
-
def is_valid_isbn(isbn):
|
24 |
-
pattern = r'^(?:(?:978|979)\d{10}|\d{9}[0-9X])$'
|
25 |
-
return bool(re.match(pattern, isbn))
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
def load_data(ratings_path, books_path) -> Tuple[pd.DataFrame, pd.DataFrame]:
|
30 |
-
ratings = pd.read_csv(ratings_path, encoding='cp1251', sep=';', on_bad_lines='skip')
|
31 |
-
ratings = ratings[ratings['Book-Rating'] != 0]
|
32 |
-
|
33 |
-
books = pd.read_csv(books_path, encoding='cp1251', sep=';', on_bad_lines='skip')
|
34 |
-
|
35 |
-
return ratings, books
|
36 |
-
|
37 |
-
|
38 |
-
def preprocess_data(ratings: pd.DataFrame, books: pd.DataFrame) -> pd.DataFrame:
|
39 |
-
dataset = pd.merge(ratings, books, on=['ISBN'])
|
40 |
-
return dataset.apply(lambda x: x.str.lower() if x.dtype == 'object' else x)
|
41 |
-
|
42 |
-
|
43 |
-
def create_embedding(dataset):
|
44 |
-
model_name = "mrm8488/bert-tiny-finetuned-sms-spam-detection"
|
45 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
46 |
-
model = AutoModel.from_pretrained(model_name)
|
47 |
-
print("creating tokens")
|
48 |
-
tokens = [tokenizer(i, padding="max_length", truncation=True, max_length=10, return_tensors='pt')
|
49 |
-
for i in dataset]
|
50 |
-
print("\ncreating embedding\n")
|
51 |
-
emb = []
|
52 |
-
for i in tqdm(tokens):
|
53 |
-
emb.append(model(**i,)["last_hidden_state"].detach().numpy().squeeze().reshape(-1))
|
54 |
-
# Normalize the data
|
55 |
-
normalized_data = emb / np.linalg.norm(emb)
|
56 |
-
return normalized_data
|
57 |
-
|
58 |
-
|
59 |
-
def build_faiss_index(dataset: pd.DataFrame) -> Tuple[faiss.IndexFlatIP, np.ndarray]:
|
60 |
-
if os.path.exists("books.index"):
|
61 |
-
return read_index("books.index")
|
62 |
-
|
63 |
-
dataset["embedding"] = create_embedding(dataset["Book-Title"])
|
64 |
-
print("creating index")
|
65 |
-
normalized_data = dataset["embedding"]
|
66 |
-
# Create a Faiss index
|
67 |
-
dimension = normalized_data.shape[-1]
|
68 |
-
index = faiss.IndexFlatIP(dimension)
|
69 |
-
|
70 |
-
# Add vectors to the index
|
71 |
-
index.add(normalized_data.astype('float16'))
|
72 |
-
|
73 |
-
write_index(index, "data/books.index")
|
74 |
-
|
75 |
-
return index
|
76 |
-
|
77 |
-
|
78 |
-
def compute_correlations_faiss(index: faiss.IndexFlatIP, book_titles: List[str],
|
79 |
-
target_book, ) -> pd.DataFrame:
|
80 |
-
print(target_book, type(target_book))
|
81 |
-
emb = create_embedding([target_book[0]])
|
82 |
-
# target_vector = book_titles.index(emb)
|
83 |
-
|
84 |
-
|
85 |
-
# Perform the search
|
86 |
-
k = len(book_titles) # Search for all books
|
87 |
-
similarities, I = index.search(emb.astype('float16'), k)
|
88 |
-
|
89 |
-
# # Reduce database and query vectors to 2D for visualization
|
90 |
-
# pca = PCA(n_components=2)
|
91 |
-
# reduced_db = pca.fit_transform(data)
|
92 |
-
# reduced_query = pca.transform(target_vector)
|
93 |
-
#
|
94 |
-
# # Scatter plot
|
95 |
-
# plt.scatter(reduced_db[:, 0], reduced_db[:, 1], label='Database Vectors', alpha=0.5)
|
96 |
-
# plt.scatter(reduced_query[:, 0], reduced_query[:, 1], label='Query Vectors', marker='X', color='red')
|
97 |
-
# plt.legend()
|
98 |
-
# plt.title("PCA Projection of IndexFlatIP Vectors")
|
99 |
-
# plt.show()
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
corr_df = pd.DataFrame({
|
104 |
-
'book': [book_titles[i] for i in I[0]],
|
105 |
-
'corr': similarities[0]
|
106 |
-
})
|
107 |
-
return corr_df.sort_values('corr', ascending=False)
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
def load_and_prepare_data():
|
112 |
-
global dataset, faiss_index, normalized_data, book_titles, ratings_by_isbn
|
113 |
-
|
114 |
-
# Download data files from Hugging Face
|
115 |
-
ratings = "BX-Book-Ratings.csv"
|
116 |
-
books = "BX-Books.csv"
|
117 |
-
ratings, books = load_data(ratings, books)
|
118 |
-
dataset = preprocess_data(ratings, books)
|
119 |
-
ratings = ratings[ratings['ISBN'].apply(is_valid_isbn)]
|
120 |
-
dataset = dataset[dataset['ISBN'].apply(is_valid_isbn)]
|
121 |
-
|
122 |
-
ratings_by_isbn = ratings.drop(columns="User-ID")[ratings.drop(columns="User-ID")["Book-Rating"] > 0]
|
123 |
-
ratings_by_isbn = ratings_by_isbn.groupby('ISBN')["Book-Rating"].mean().reset_index()
|
124 |
-
ratings_by_isbn = ratings_by_isbn.drop_duplicates(subset=['ISBN'])
|
125 |
-
dataset = dataset.drop(columns=["User-ID", "Book-Rating"])
|
126 |
-
dataset = dataset[dataset['ISBN'].isin(ratings_by_isbn['ISBN'])]
|
127 |
-
dataset = dataset.drop_duplicates(subset=['ISBN'])
|
128 |
-
dataset = preprocess_data(dataset, ratings_by_isbn)
|
129 |
-
# Build Faiss index
|
130 |
-
faiss_index = build_faiss_index(dataset)
|
131 |
-
|
132 |
-
book_titles = dataset["Book-Title"]
|
133 |
-
|
134 |
-
|
135 |
-
def recommend_books(target_book: str
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
"Title": dataset.loc[dataset['Book-Title'] == row['book'], 'Book-Title'].values[0],
|
167 |
-
"Author": dataset.loc[dataset['Book-Title'] == row['book'], 'Book-Author'].values[0],
|
168 |
-
"Year": dataset.loc[dataset['Book-Title'] == row['book'], 'Year-Of-Publication'].values[0],
|
169 |
-
"Publisher": dataset.loc[dataset['Book-Title'] == row['book'], 'Publisher'].values[0],
|
170 |
-
"ISBN": dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[0],
|
171 |
-
"Rating": ratings_by_isbn.loc[
|
172 |
-
ratings_by_isbn['ISBN'] == dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[
|
173 |
-
0], 'Book-Rating'].values[0],
|
174 |
-
"none": dups.append(dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[0])
|
175 |
-
}
|
176 |
-
for idx, (_, row) in enumerate(recommendations.iterrows(), 1)
|
177 |
-
if dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[0] not in dups
|
178 |
-
])
|
179 |
-
|
180 |
-
return result_df
|
181 |
-
|
182 |
-
|
183 |
-
# Create Gradio interface
|
184 |
-
iface = gr.Interface(
|
185 |
-
fn=recommend_books,
|
186 |
-
inputs=[
|
187 |
-
gr.Textbox(label="Enter a book title"),
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
# Launch the app
|
202 |
iface.launch()
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from typing import List, Tuple
|
8 |
+
import faiss
|
9 |
+
from faiss import write_index, read_index
|
10 |
+
import gradio as gr
|
11 |
+
from fuzzywuzzy import process
|
12 |
+
from pandas import DataFrame
|
13 |
+
from tqdm import tqdm
|
14 |
+
from transformers import BertTokenizerFast, BertModel, AutoTokenizer, AutoModel
|
15 |
+
|
16 |
+
# Global variables to store loaded data
|
17 |
+
dataset = None
|
18 |
+
faiss_index = None
|
19 |
+
normalized_data = None
|
20 |
+
book_titles = None
|
21 |
+
|
22 |
+
|
23 |
+
def is_valid_isbn(isbn):
|
24 |
+
pattern = r'^(?:(?:978|979)\d{10}|\d{9}[0-9X])$'
|
25 |
+
return bool(re.match(pattern, isbn))
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
def load_data(ratings_path, books_path) -> Tuple[pd.DataFrame, pd.DataFrame]:
|
30 |
+
ratings = pd.read_csv(ratings_path, encoding='cp1251', sep=';', on_bad_lines='skip')
|
31 |
+
ratings = ratings[ratings['Book-Rating'] != 0]
|
32 |
+
|
33 |
+
books = pd.read_csv(books_path, encoding='cp1251', sep=';', on_bad_lines='skip')
|
34 |
+
|
35 |
+
return ratings, books
|
36 |
+
|
37 |
+
|
38 |
+
def preprocess_data(ratings: pd.DataFrame, books: pd.DataFrame) -> pd.DataFrame:
|
39 |
+
dataset = pd.merge(ratings, books, on=['ISBN'])
|
40 |
+
return dataset.apply(lambda x: x.str.lower() if x.dtype == 'object' else x)
|
41 |
+
|
42 |
+
|
43 |
+
def create_embedding(dataset):
|
44 |
+
model_name = "mrm8488/bert-tiny-finetuned-sms-spam-detection"
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
46 |
+
model = AutoModel.from_pretrained(model_name)
|
47 |
+
print("creating tokens")
|
48 |
+
tokens = [tokenizer(i, padding="max_length", truncation=True, max_length=10, return_tensors='pt')
|
49 |
+
for i in dataset]
|
50 |
+
print("\ncreating embedding\n")
|
51 |
+
emb = []
|
52 |
+
for i in tqdm(tokens):
|
53 |
+
emb.append(model(**i,)["last_hidden_state"].detach().numpy().squeeze().reshape(-1))
|
54 |
+
# Normalize the data
|
55 |
+
normalized_data = emb / np.linalg.norm(emb)
|
56 |
+
return normalized_data
|
57 |
+
|
58 |
+
|
59 |
+
def build_faiss_index(dataset: pd.DataFrame) -> Tuple[faiss.IndexFlatIP, np.ndarray]:
|
60 |
+
if os.path.exists("books.index"):
|
61 |
+
return read_index("books.index")
|
62 |
+
|
63 |
+
dataset["embedding"] = create_embedding(dataset["Book-Title"])
|
64 |
+
print("creating index")
|
65 |
+
normalized_data = dataset["embedding"]
|
66 |
+
# Create a Faiss index
|
67 |
+
dimension = normalized_data.shape[-1]
|
68 |
+
index = faiss.IndexFlatIP(dimension)
|
69 |
+
|
70 |
+
# Add vectors to the index
|
71 |
+
index.add(normalized_data.astype('float16'))
|
72 |
+
|
73 |
+
write_index(index, "data/books.index")
|
74 |
+
|
75 |
+
return index
|
76 |
+
|
77 |
+
|
78 |
+
def compute_correlations_faiss(index: faiss.IndexFlatIP, book_titles: List[str],
|
79 |
+
target_book, ) -> pd.DataFrame:
|
80 |
+
print(target_book, type(target_book))
|
81 |
+
emb = create_embedding([target_book[0]])
|
82 |
+
# target_vector = book_titles.index(emb)
|
83 |
+
|
84 |
+
|
85 |
+
# Perform the search
|
86 |
+
k = len(book_titles) # Search for all books
|
87 |
+
similarities, I = index.search(emb.astype('float16'), k)
|
88 |
+
|
89 |
+
# # Reduce database and query vectors to 2D for visualization
|
90 |
+
# pca = PCA(n_components=2)
|
91 |
+
# reduced_db = pca.fit_transform(data)
|
92 |
+
# reduced_query = pca.transform(target_vector)
|
93 |
+
#
|
94 |
+
# # Scatter plot
|
95 |
+
# plt.scatter(reduced_db[:, 0], reduced_db[:, 1], label='Database Vectors', alpha=0.5)
|
96 |
+
# plt.scatter(reduced_query[:, 0], reduced_query[:, 1], label='Query Vectors', marker='X', color='red')
|
97 |
+
# plt.legend()
|
98 |
+
# plt.title("PCA Projection of IndexFlatIP Vectors")
|
99 |
+
# plt.show()
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
corr_df = pd.DataFrame({
|
104 |
+
'book': [book_titles[i] for i in I[0]],
|
105 |
+
'corr': similarities[0]
|
106 |
+
})
|
107 |
+
return corr_df.sort_values('corr', ascending=False)
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
def load_and_prepare_data():
|
112 |
+
global dataset, faiss_index, normalized_data, book_titles, ratings_by_isbn
|
113 |
+
|
114 |
+
# Download data files from Hugging Face
|
115 |
+
ratings = "BX-Book-Ratings.csv"
|
116 |
+
books = "BX-Books.csv"
|
117 |
+
ratings, books = load_data(ratings, books)
|
118 |
+
dataset = preprocess_data(ratings, books)
|
119 |
+
ratings = ratings[ratings['ISBN'].apply(is_valid_isbn)]
|
120 |
+
dataset = dataset[dataset['ISBN'].apply(is_valid_isbn)]
|
121 |
+
|
122 |
+
ratings_by_isbn = ratings.drop(columns="User-ID")[ratings.drop(columns="User-ID")["Book-Rating"] > 0]
|
123 |
+
ratings_by_isbn = ratings_by_isbn.groupby('ISBN')["Book-Rating"].mean().reset_index()
|
124 |
+
ratings_by_isbn = ratings_by_isbn.drop_duplicates(subset=['ISBN'])
|
125 |
+
dataset = dataset.drop(columns=["User-ID", "Book-Rating"])
|
126 |
+
dataset = dataset[dataset['ISBN'].isin(ratings_by_isbn['ISBN'])]
|
127 |
+
dataset = dataset.drop_duplicates(subset=['ISBN'])
|
128 |
+
dataset = preprocess_data(dataset, ratings_by_isbn)
|
129 |
+
# Build Faiss index
|
130 |
+
faiss_index = build_faiss_index(dataset)
|
131 |
+
|
132 |
+
book_titles = dataset["Book-Title"]
|
133 |
+
|
134 |
+
|
135 |
+
def recommend_books(target_book: str):
|
136 |
+
num_recommendations: int = 15
|
137 |
+
global dataset, faiss_index, normalized_data, book_titles, ratings_by_isbn
|
138 |
+
|
139 |
+
if dataset is None or faiss_index is None or normalized_data is None or book_titles is None:
|
140 |
+
load_and_prepare_data()
|
141 |
+
dataset['ISBN'] = dataset['ISBN'].str.strip()
|
142 |
+
print("Before dropping duplicates:", len(dataset))
|
143 |
+
dataset = dataset.drop_duplicates(subset=['ISBN'])
|
144 |
+
print("After dropping duplicates:", len(dataset))
|
145 |
+
|
146 |
+
target_book = target_book.lower()
|
147 |
+
# Fuzzy match the input to the closest book title
|
148 |
+
closest_match = process.extractOne(target_book, book_titles)
|
149 |
+
|
150 |
+
|
151 |
+
correlations = compute_correlations_faiss(faiss_index, book_titles, closest_match)
|
152 |
+
|
153 |
+
recommendations = correlations[correlations['book'] != target_book]
|
154 |
+
|
155 |
+
# Create a mask of unique ISBNs
|
156 |
+
unique_mask = dataset.duplicated(subset=['ISBN'], keep='first') == False
|
157 |
+
|
158 |
+
# Apply the mask
|
159 |
+
dataset = dataset[unique_mask]
|
160 |
+
|
161 |
+
recommendations = recommendations.head(num_recommendations)
|
162 |
+
|
163 |
+
dups = []
|
164 |
+
result_df = pd.DataFrame([
|
165 |
+
{
|
166 |
+
"Title": dataset.loc[dataset['Book-Title'] == row['book'], 'Book-Title'].values[0],
|
167 |
+
"Author": dataset.loc[dataset['Book-Title'] == row['book'], 'Book-Author'].values[0],
|
168 |
+
"Year": dataset.loc[dataset['Book-Title'] == row['book'], 'Year-Of-Publication'].values[0],
|
169 |
+
"Publisher": dataset.loc[dataset['Book-Title'] == row['book'], 'Publisher'].values[0],
|
170 |
+
"ISBN": dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[0],
|
171 |
+
"Rating": ratings_by_isbn.loc[
|
172 |
+
ratings_by_isbn['ISBN'] == dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[
|
173 |
+
0], 'Book-Rating'].values[0],
|
174 |
+
"none": dups.append(dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[0])
|
175 |
+
}
|
176 |
+
for idx, (_, row) in enumerate(recommendations.iterrows(), 1)
|
177 |
+
if dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[0] not in dups
|
178 |
+
])
|
179 |
+
|
180 |
+
return result_df
|
181 |
+
|
182 |
+
|
183 |
+
# Create Gradio interface
|
184 |
+
iface = gr.Interface(
|
185 |
+
fn=recommend_books,
|
186 |
+
inputs=[
|
187 |
+
gr.Textbox(label="Enter a book title"),
|
188 |
+
],
|
189 |
+
outputs=[
|
190 |
+
gr.Dataframe(
|
191 |
+
headers=["Title", "Author", "Year", "Publisher", "ISBN", "Rating"],
|
192 |
+
type="pandas",
|
193 |
+
|
194 |
+
)
|
195 |
+
],
|
196 |
+
title="Book Recommender",
|
197 |
+
description="Enter a book title to get recommendations based on user ratings and book similarities."
|
198 |
+
)
|
199 |
+
|
200 |
+
# Launch the app
|
|
|
201 |
iface.launch()
|