danschnurp commited on
Commit
db8d54f
·
verified ·
1 Parent(s): 898cc5a

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +200 -201
app.py CHANGED
@@ -1,202 +1,201 @@
1
- import os
2
- import re
3
-
4
- import pandas as pd
5
- import numpy as np
6
-
7
- from typing import List, Tuple
8
- import faiss
9
- from faiss import write_index, read_index
10
- import gradio as gr
11
- from fuzzywuzzy import process
12
- from pandas import DataFrame
13
- from tqdm import tqdm
14
- from transformers import BertTokenizerFast, BertModel, AutoTokenizer, AutoModel
15
-
16
- # Global variables to store loaded data
17
- dataset = None
18
- faiss_index = None
19
- normalized_data = None
20
- book_titles = None
21
-
22
-
23
- def is_valid_isbn(isbn):
24
- pattern = r'^(?:(?:978|979)\d{10}|\d{9}[0-9X])$'
25
- return bool(re.match(pattern, isbn))
26
-
27
-
28
-
29
- def load_data(ratings_path, books_path) -> Tuple[pd.DataFrame, pd.DataFrame]:
30
- ratings = pd.read_csv(ratings_path, encoding='cp1251', sep=';', on_bad_lines='skip')
31
- ratings = ratings[ratings['Book-Rating'] != 0]
32
-
33
- books = pd.read_csv(books_path, encoding='cp1251', sep=';', on_bad_lines='skip')
34
-
35
- return ratings, books
36
-
37
-
38
- def preprocess_data(ratings: pd.DataFrame, books: pd.DataFrame) -> pd.DataFrame:
39
- dataset = pd.merge(ratings, books, on=['ISBN'])
40
- return dataset.apply(lambda x: x.str.lower() if x.dtype == 'object' else x)
41
-
42
-
43
- def create_embedding(dataset):
44
- model_name = "mrm8488/bert-tiny-finetuned-sms-spam-detection"
45
- tokenizer = AutoTokenizer.from_pretrained(model_name)
46
- model = AutoModel.from_pretrained(model_name)
47
- print("creating tokens")
48
- tokens = [tokenizer(i, padding="max_length", truncation=True, max_length=10, return_tensors='pt')
49
- for i in dataset]
50
- print("\ncreating embedding\n")
51
- emb = []
52
- for i in tqdm(tokens):
53
- emb.append(model(**i,)["last_hidden_state"].detach().numpy().squeeze().reshape(-1))
54
- # Normalize the data
55
- normalized_data = emb / np.linalg.norm(emb)
56
- return normalized_data
57
-
58
-
59
- def build_faiss_index(dataset: pd.DataFrame) -> Tuple[faiss.IndexFlatIP, np.ndarray]:
60
- if os.path.exists("books.index"):
61
- return read_index("books.index")
62
-
63
- dataset["embedding"] = create_embedding(dataset["Book-Title"])
64
- print("creating index")
65
- normalized_data = dataset["embedding"]
66
- # Create a Faiss index
67
- dimension = normalized_data.shape[-1]
68
- index = faiss.IndexFlatIP(dimension)
69
-
70
- # Add vectors to the index
71
- index.add(normalized_data.astype('float16'))
72
-
73
- write_index(index, "data/books.index")
74
-
75
- return index
76
-
77
-
78
- def compute_correlations_faiss(index: faiss.IndexFlatIP, book_titles: List[str],
79
- target_book, ) -> pd.DataFrame:
80
- print(target_book, type(target_book))
81
- emb = create_embedding([target_book[0]])
82
- # target_vector = book_titles.index(emb)
83
-
84
-
85
- # Perform the search
86
- k = len(book_titles) # Search for all books
87
- similarities, I = index.search(emb.astype('float16'), k)
88
-
89
- # # Reduce database and query vectors to 2D for visualization
90
- # pca = PCA(n_components=2)
91
- # reduced_db = pca.fit_transform(data)
92
- # reduced_query = pca.transform(target_vector)
93
- #
94
- # # Scatter plot
95
- # plt.scatter(reduced_db[:, 0], reduced_db[:, 1], label='Database Vectors', alpha=0.5)
96
- # plt.scatter(reduced_query[:, 0], reduced_query[:, 1], label='Query Vectors', marker='X', color='red')
97
- # plt.legend()
98
- # plt.title("PCA Projection of IndexFlatIP Vectors")
99
- # plt.show()
100
-
101
-
102
-
103
- corr_df = pd.DataFrame({
104
- 'book': [book_titles[i] for i in I[0]],
105
- 'corr': similarities[0]
106
- })
107
- return corr_df.sort_values('corr', ascending=False)
108
-
109
-
110
-
111
- def load_and_prepare_data():
112
- global dataset, faiss_index, normalized_data, book_titles, ratings_by_isbn
113
-
114
- # Download data files from Hugging Face
115
- ratings = "BX-Book-Ratings.csv"
116
- books = "BX-Books.csv"
117
- ratings, books = load_data(ratings, books)
118
- dataset = preprocess_data(ratings, books)
119
- ratings = ratings[ratings['ISBN'].apply(is_valid_isbn)]
120
- dataset = dataset[dataset['ISBN'].apply(is_valid_isbn)]
121
-
122
- ratings_by_isbn = ratings.drop(columns="User-ID")[ratings.drop(columns="User-ID")["Book-Rating"] > 0]
123
- ratings_by_isbn = ratings_by_isbn.groupby('ISBN')["Book-Rating"].mean().reset_index()
124
- ratings_by_isbn = ratings_by_isbn.drop_duplicates(subset=['ISBN'])
125
- dataset = dataset.drop(columns=["User-ID", "Book-Rating"])
126
- dataset = dataset[dataset['ISBN'].isin(ratings_by_isbn['ISBN'])]
127
- dataset = dataset.drop_duplicates(subset=['ISBN'])
128
- dataset = preprocess_data(dataset, ratings_by_isbn)
129
- # Build Faiss index
130
- faiss_index = build_faiss_index(dataset)
131
-
132
- book_titles = dataset["Book-Title"]
133
-
134
-
135
- def recommend_books(target_book: str, num_recommendations: int = 10):
136
- global dataset, faiss_index, normalized_data, book_titles, ratings_by_isbn
137
-
138
- if dataset is None or faiss_index is None or normalized_data is None or book_titles is None:
139
- load_and_prepare_data()
140
- dataset['ISBN'] = dataset['ISBN'].str.strip()
141
- print("Before dropping duplicates:", len(dataset))
142
- dataset = dataset.drop_duplicates(subset=['ISBN'])
143
- print("After dropping duplicates:", len(dataset))
144
-
145
- target_book = target_book.lower()
146
- # Fuzzy match the input to the closest book title
147
- closest_match = process.extractOne(target_book, book_titles)
148
-
149
-
150
- correlations = compute_correlations_faiss(faiss_index, book_titles, closest_match)
151
-
152
- recommendations = correlations[correlations['book'] != target_book]
153
-
154
- # Create a mask of unique ISBNs
155
- unique_mask = dataset.duplicated(subset=['ISBN'], keep='first') == False
156
-
157
- # Apply the mask
158
- dataset = dataset[unique_mask]
159
-
160
- recommendations = recommendations.head(num_recommendations)
161
-
162
- dups = []
163
- result_df = pd.DataFrame([
164
- {
165
- "Rank": idx,
166
- "Title": dataset.loc[dataset['Book-Title'] == row['book'], 'Book-Title'].values[0],
167
- "Author": dataset.loc[dataset['Book-Title'] == row['book'], 'Book-Author'].values[0],
168
- "Year": dataset.loc[dataset['Book-Title'] == row['book'], 'Year-Of-Publication'].values[0],
169
- "Publisher": dataset.loc[dataset['Book-Title'] == row['book'], 'Publisher'].values[0],
170
- "ISBN": dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[0],
171
- "Rating": ratings_by_isbn.loc[
172
- ratings_by_isbn['ISBN'] == dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[
173
- 0], 'Book-Rating'].values[0],
174
- "none": dups.append(dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[0])
175
- }
176
- for idx, (_, row) in enumerate(recommendations.iterrows(), 1)
177
- if dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[0] not in dups
178
- ])
179
-
180
- return result_df
181
-
182
-
183
- # Create Gradio interface
184
- iface = gr.Interface(
185
- fn=recommend_books,
186
- inputs=[
187
- gr.Textbox(label="Enter a book title"),
188
- gr.Slider(minimum=1, maximum=20, step=1, label="Number of recommendations", value=10)
189
- ],
190
- outputs=[
191
- gr.Dataframe(
192
- headers=["Rank", "Title", "Author", "Year", "Publisher", "ISBN", "Rating"],
193
- type="pandas",
194
-
195
- )
196
- ],
197
- title="Book Recommender",
198
- description="Enter a book title to get recommendations based on user ratings and book similarities."
199
- )
200
-
201
- # Launch the app
202
  iface.launch()
 
1
+ import os
2
+ import re
3
+
4
+ import pandas as pd
5
+ import numpy as np
6
+
7
+ from typing import List, Tuple
8
+ import faiss
9
+ from faiss import write_index, read_index
10
+ import gradio as gr
11
+ from fuzzywuzzy import process
12
+ from pandas import DataFrame
13
+ from tqdm import tqdm
14
+ from transformers import BertTokenizerFast, BertModel, AutoTokenizer, AutoModel
15
+
16
+ # Global variables to store loaded data
17
+ dataset = None
18
+ faiss_index = None
19
+ normalized_data = None
20
+ book_titles = None
21
+
22
+
23
+ def is_valid_isbn(isbn):
24
+ pattern = r'^(?:(?:978|979)\d{10}|\d{9}[0-9X])$'
25
+ return bool(re.match(pattern, isbn))
26
+
27
+
28
+
29
+ def load_data(ratings_path, books_path) -> Tuple[pd.DataFrame, pd.DataFrame]:
30
+ ratings = pd.read_csv(ratings_path, encoding='cp1251', sep=';', on_bad_lines='skip')
31
+ ratings = ratings[ratings['Book-Rating'] != 0]
32
+
33
+ books = pd.read_csv(books_path, encoding='cp1251', sep=';', on_bad_lines='skip')
34
+
35
+ return ratings, books
36
+
37
+
38
+ def preprocess_data(ratings: pd.DataFrame, books: pd.DataFrame) -> pd.DataFrame:
39
+ dataset = pd.merge(ratings, books, on=['ISBN'])
40
+ return dataset.apply(lambda x: x.str.lower() if x.dtype == 'object' else x)
41
+
42
+
43
+ def create_embedding(dataset):
44
+ model_name = "mrm8488/bert-tiny-finetuned-sms-spam-detection"
45
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
46
+ model = AutoModel.from_pretrained(model_name)
47
+ print("creating tokens")
48
+ tokens = [tokenizer(i, padding="max_length", truncation=True, max_length=10, return_tensors='pt')
49
+ for i in dataset]
50
+ print("\ncreating embedding\n")
51
+ emb = []
52
+ for i in tqdm(tokens):
53
+ emb.append(model(**i,)["last_hidden_state"].detach().numpy().squeeze().reshape(-1))
54
+ # Normalize the data
55
+ normalized_data = emb / np.linalg.norm(emb)
56
+ return normalized_data
57
+
58
+
59
+ def build_faiss_index(dataset: pd.DataFrame) -> Tuple[faiss.IndexFlatIP, np.ndarray]:
60
+ if os.path.exists("books.index"):
61
+ return read_index("books.index")
62
+
63
+ dataset["embedding"] = create_embedding(dataset["Book-Title"])
64
+ print("creating index")
65
+ normalized_data = dataset["embedding"]
66
+ # Create a Faiss index
67
+ dimension = normalized_data.shape[-1]
68
+ index = faiss.IndexFlatIP(dimension)
69
+
70
+ # Add vectors to the index
71
+ index.add(normalized_data.astype('float16'))
72
+
73
+ write_index(index, "data/books.index")
74
+
75
+ return index
76
+
77
+
78
+ def compute_correlations_faiss(index: faiss.IndexFlatIP, book_titles: List[str],
79
+ target_book, ) -> pd.DataFrame:
80
+ print(target_book, type(target_book))
81
+ emb = create_embedding([target_book[0]])
82
+ # target_vector = book_titles.index(emb)
83
+
84
+
85
+ # Perform the search
86
+ k = len(book_titles) # Search for all books
87
+ similarities, I = index.search(emb.astype('float16'), k)
88
+
89
+ # # Reduce database and query vectors to 2D for visualization
90
+ # pca = PCA(n_components=2)
91
+ # reduced_db = pca.fit_transform(data)
92
+ # reduced_query = pca.transform(target_vector)
93
+ #
94
+ # # Scatter plot
95
+ # plt.scatter(reduced_db[:, 0], reduced_db[:, 1], label='Database Vectors', alpha=0.5)
96
+ # plt.scatter(reduced_query[:, 0], reduced_query[:, 1], label='Query Vectors', marker='X', color='red')
97
+ # plt.legend()
98
+ # plt.title("PCA Projection of IndexFlatIP Vectors")
99
+ # plt.show()
100
+
101
+
102
+
103
+ corr_df = pd.DataFrame({
104
+ 'book': [book_titles[i] for i in I[0]],
105
+ 'corr': similarities[0]
106
+ })
107
+ return corr_df.sort_values('corr', ascending=False)
108
+
109
+
110
+
111
+ def load_and_prepare_data():
112
+ global dataset, faiss_index, normalized_data, book_titles, ratings_by_isbn
113
+
114
+ # Download data files from Hugging Face
115
+ ratings = "BX-Book-Ratings.csv"
116
+ books = "BX-Books.csv"
117
+ ratings, books = load_data(ratings, books)
118
+ dataset = preprocess_data(ratings, books)
119
+ ratings = ratings[ratings['ISBN'].apply(is_valid_isbn)]
120
+ dataset = dataset[dataset['ISBN'].apply(is_valid_isbn)]
121
+
122
+ ratings_by_isbn = ratings.drop(columns="User-ID")[ratings.drop(columns="User-ID")["Book-Rating"] > 0]
123
+ ratings_by_isbn = ratings_by_isbn.groupby('ISBN')["Book-Rating"].mean().reset_index()
124
+ ratings_by_isbn = ratings_by_isbn.drop_duplicates(subset=['ISBN'])
125
+ dataset = dataset.drop(columns=["User-ID", "Book-Rating"])
126
+ dataset = dataset[dataset['ISBN'].isin(ratings_by_isbn['ISBN'])]
127
+ dataset = dataset.drop_duplicates(subset=['ISBN'])
128
+ dataset = preprocess_data(dataset, ratings_by_isbn)
129
+ # Build Faiss index
130
+ faiss_index = build_faiss_index(dataset)
131
+
132
+ book_titles = dataset["Book-Title"]
133
+
134
+
135
+ def recommend_books(target_book: str):
136
+ num_recommendations: int = 15
137
+ global dataset, faiss_index, normalized_data, book_titles, ratings_by_isbn
138
+
139
+ if dataset is None or faiss_index is None or normalized_data is None or book_titles is None:
140
+ load_and_prepare_data()
141
+ dataset['ISBN'] = dataset['ISBN'].str.strip()
142
+ print("Before dropping duplicates:", len(dataset))
143
+ dataset = dataset.drop_duplicates(subset=['ISBN'])
144
+ print("After dropping duplicates:", len(dataset))
145
+
146
+ target_book = target_book.lower()
147
+ # Fuzzy match the input to the closest book title
148
+ closest_match = process.extractOne(target_book, book_titles)
149
+
150
+
151
+ correlations = compute_correlations_faiss(faiss_index, book_titles, closest_match)
152
+
153
+ recommendations = correlations[correlations['book'] != target_book]
154
+
155
+ # Create a mask of unique ISBNs
156
+ unique_mask = dataset.duplicated(subset=['ISBN'], keep='first') == False
157
+
158
+ # Apply the mask
159
+ dataset = dataset[unique_mask]
160
+
161
+ recommendations = recommendations.head(num_recommendations)
162
+
163
+ dups = []
164
+ result_df = pd.DataFrame([
165
+ {
166
+ "Title": dataset.loc[dataset['Book-Title'] == row['book'], 'Book-Title'].values[0],
167
+ "Author": dataset.loc[dataset['Book-Title'] == row['book'], 'Book-Author'].values[0],
168
+ "Year": dataset.loc[dataset['Book-Title'] == row['book'], 'Year-Of-Publication'].values[0],
169
+ "Publisher": dataset.loc[dataset['Book-Title'] == row['book'], 'Publisher'].values[0],
170
+ "ISBN": dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[0],
171
+ "Rating": ratings_by_isbn.loc[
172
+ ratings_by_isbn['ISBN'] == dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[
173
+ 0], 'Book-Rating'].values[0],
174
+ "none": dups.append(dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[0])
175
+ }
176
+ for idx, (_, row) in enumerate(recommendations.iterrows(), 1)
177
+ if dataset.loc[dataset['Book-Title'] == row['book'], 'ISBN'].values[0] not in dups
178
+ ])
179
+
180
+ return result_df
181
+
182
+
183
+ # Create Gradio interface
184
+ iface = gr.Interface(
185
+ fn=recommend_books,
186
+ inputs=[
187
+ gr.Textbox(label="Enter a book title"),
188
+ ],
189
+ outputs=[
190
+ gr.Dataframe(
191
+ headers=["Title", "Author", "Year", "Publisher", "ISBN", "Rating"],
192
+ type="pandas",
193
+
194
+ )
195
+ ],
196
+ title="Book Recommender",
197
+ description="Enter a book title to get recommendations based on user ratings and book similarities."
198
+ )
199
+
200
+ # Launch the app
 
201
  iface.launch()