|
import streamlit as st |
|
import whisper |
|
import os |
|
from transformers import pipeline |
|
from pydub import AudioSegment |
|
|
|
def transcribe_audio(audiofile): |
|
|
|
st.session_state['audio'] = audiofile |
|
print(f"audio_file_session_state:{st.session_state['audio'] }") |
|
|
|
|
|
audio_size = round(os.path.getsize(st.session_state['audio'])/(1024*1024),1) |
|
print(f"audio file size:{audio_size}") |
|
|
|
|
|
podcast = AudioSegment.from_mp3(st.session_state['audio']) |
|
st.session_state['audio_segment'] = podcast |
|
podcast_duration = podcast.duration_seconds |
|
print(f"Audio Duration: {podcast_duration}") |
|
|
|
st.info('Breaking podcast into 5 minute chunks.') |
|
|
|
chunk_length_five_minutes = 5 * 60 * 1000 |
|
podcast_chunks = podcast[::chunk_length_five_minutes] |
|
|
|
st.info('Transcribe') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
transcribe_pipe = pipeline(model="facebook/wav2vec2-base-960h") |
|
transcription = transcribe_pipe(audiofile, chunk_length_s=10, stride_length_s=(4, 2)) |
|
|
|
print(f"transcription: {transcription}") |
|
|
|
return podcast_duration |
|
|
|
st.markdown("# Podcast Q&A") |
|
|
|
st.markdown( |
|
""" |
|
This helps understand information-dense podcast episodes by doing the following: |
|
- Speech to Text transcription - using OpenSource Whisper Model |
|
- Summarizes the episode |
|
- Allows you to ask questions and returns direct quotes from the episode. |
|
|
|
""" |
|
) |
|
|
|
if st.button("Process Audio File"): |
|
transcribe_audio("marketplace-2023-06-14.mp3") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|