File size: 1,018 Bytes
ab58fb5 9d727e3 2040736 f3e24b8 ab58fb5 253b4e4 b03d0c5 4ebf6a9 b03d0c5 2040736 4ebf6a9 2040736 34b0634 2040736 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import streamlit as st
import whisper
import os
import * from functions
from transformers import pipeline
def transcribe_audio(audiofile):
st.session_state['audio'] = audiofile
print(f"audio_file_session_state:{st.session_state['audio'] }")
#get size of audio file
audio_size = round(os.path.getsize(st.session_state['audio'])/(1024*1024),1)
print(f"audio file size:{audio_size}")
return audio_size
st.markdown("# Podcast Q&A")
st.markdown(
"""
This helps understand information-dense podcast episodes by doing the following:
- Speech to Text transcription - using OpenSource Whisper Model
- Summarizes the episode
- Allows you to ask questions and returns direct quotes from the episode.
"""
)
if st.button("Process Audio File")
transcribe_audio("marketplace-2023-06-14.mp3")
#audio_file = st.file_uploader("Upload audio copy of file", key="upload", type=['.mp3'])
# if audio_file:
# transcribe_audio(audio_file)
|