Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,50 +15,56 @@ st.set_page_config(page_title="Chat with Notes and AI", page_icon=":books:", lay
|
|
| 15 |
# Load environment variables
|
| 16 |
load_dotenv()
|
| 17 |
|
| 18 |
-
#
|
| 19 |
@st.cache_resource
|
| 20 |
def load_pipeline():
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
# Load tokenizer and model
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left", trust_remote_code=True)
|
|
|
|
|
|
|
| 26 |
model = AutoModelForCausalLM.from_pretrained(
|
| 27 |
model_name,
|
| 28 |
-
torch_dtype=torch.float32, # Use float32 for CPU
|
| 29 |
-
device_map="auto",
|
| 30 |
-
trust_remote_code=True
|
|
|
|
| 31 |
)
|
| 32 |
|
| 33 |
-
# Return text-generation pipeline
|
| 34 |
return pipeline(
|
| 35 |
task="text-generation",
|
| 36 |
model=model,
|
| 37 |
tokenizer=tokenizer,
|
| 38 |
-
torch_dtype=torch.
|
| 39 |
device_map="auto",
|
| 40 |
-
return_full_text=True
|
| 41 |
-
max_new_tokens=100 # Limit response length
|
| 42 |
)
|
| 43 |
|
| 44 |
-
# Initialize pipeline
|
| 45 |
generate_text = load_pipeline()
|
| 46 |
|
| 47 |
-
# LangChain
|
| 48 |
hf_pipeline = HuggingFacePipeline(pipeline=generate_text)
|
| 49 |
|
| 50 |
-
#
|
| 51 |
-
prompt = PromptTemplate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
prompt_with_context = PromptTemplate(
|
| 53 |
input_variables=["instruction", "context"],
|
| 54 |
template="{instruction}\n\nInput:\n{context}"
|
| 55 |
)
|
| 56 |
|
| 57 |
-
#
|
| 58 |
llm_chain = LLMChain(llm=hf_pipeline, prompt=prompt)
|
| 59 |
llm_context_chain = LLMChain(llm=hf_pipeline, prompt=prompt_with_context)
|
| 60 |
|
| 61 |
-
#
|
| 62 |
def get_text_files_content(folder):
|
| 63 |
text = ""
|
| 64 |
for filename in os.listdir(folder):
|
|
@@ -67,92 +73,107 @@ def get_text_files_content(folder):
|
|
| 67 |
text += file.read() + "\n"
|
| 68 |
return text
|
| 69 |
|
| 70 |
-
#
|
| 71 |
def get_chunks(raw_text):
|
| 72 |
from langchain.text_splitter import CharacterTextSplitter
|
| 73 |
text_splitter = CharacterTextSplitter(
|
| 74 |
separator="\n",
|
| 75 |
-
chunk_size=
|
| 76 |
-
chunk_overlap=
|
|
|
|
| 77 |
)
|
| 78 |
-
|
|
|
|
| 79 |
|
| 80 |
-
#
|
| 81 |
def get_vectorstore(chunks):
|
| 82 |
embeddings = HuggingFaceEmbeddings(
|
| 83 |
-
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 84 |
-
model_kwargs={'device': 'cpu'} # Ensure embeddings
|
| 85 |
)
|
| 86 |
-
|
|
|
|
| 87 |
|
| 88 |
-
#
|
| 89 |
def handle_question(question, vectorstore=None):
|
| 90 |
if vectorstore:
|
| 91 |
-
#
|
| 92 |
-
documents = vectorstore.similarity_search(question, k=
|
| 93 |
-
context = "\n".join([doc.page_content for doc in documents])
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
if context:
|
| 96 |
-
|
|
|
|
| 97 |
|
| 98 |
-
# Fallback to instruction-only chain if no context
|
| 99 |
-
return llm_chain.
|
| 100 |
|
| 101 |
def main():
|
| 102 |
st.title("Chat with Notes :books:")
|
| 103 |
|
| 104 |
-
#
|
| 105 |
if "vectorstore" not in st.session_state:
|
| 106 |
st.session_state.vectorstore = None
|
| 107 |
|
| 108 |
-
#
|
| 109 |
-
data_folder = "data" #
|
| 110 |
-
essay_folder = "essays" #
|
| 111 |
|
| 112 |
# Content type selection
|
| 113 |
content_type = st.sidebar.radio("Select Content Type:", ["Current Affairs", "Essays"])
|
| 114 |
|
| 115 |
-
#
|
| 116 |
if content_type == "Current Affairs":
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
# Subject selection
|
| 122 |
selected_subject = st.sidebar.selectbox("Select a Subject:", subjects)
|
| 123 |
|
| 124 |
-
#
|
| 125 |
raw_text = ""
|
| 126 |
if content_type == "Current Affairs" and selected_subject:
|
| 127 |
subject_folder = os.path.join(data_folder, selected_subject)
|
| 128 |
raw_text = get_text_files_content(subject_folder)
|
| 129 |
elif content_type == "Essays" and selected_subject:
|
| 130 |
-
subject_file = os.path.join(essay_folder,
|
| 131 |
if os.path.exists(subject_file):
|
| 132 |
with open(subject_file, "r", encoding="utf-8") as file:
|
| 133 |
raw_text = file.read()
|
| 134 |
|
| 135 |
-
# Display preview
|
| 136 |
if raw_text:
|
| 137 |
st.subheader("Preview of Notes")
|
| 138 |
-
st.text_area("Preview Content:", value=raw_text[:
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
| 143 |
else:
|
| 144 |
st.warning("No content available for the selected subject.")
|
| 145 |
|
| 146 |
-
#
|
| 147 |
st.subheader("Ask Your Question")
|
| 148 |
question = st.text_input("Ask a question about your selected subject:")
|
| 149 |
if question:
|
| 150 |
if st.session_state.vectorstore:
|
| 151 |
response = handle_question(question, st.session_state.vectorstore)
|
| 152 |
st.subheader("Answer:")
|
| 153 |
-
st.write(response
|
| 154 |
else:
|
| 155 |
st.warning("Please load the content for the selected subject before asking a question.")
|
| 156 |
|
| 157 |
-
if __name__ ==
|
| 158 |
main()
|
|
|
|
| 15 |
# Load environment variables
|
| 16 |
load_dotenv()
|
| 17 |
|
| 18 |
+
# Dolly-v2-3b model pipeline
|
| 19 |
@st.cache_resource
|
| 20 |
def load_pipeline():
|
| 21 |
+
model_name = "databricks/dolly-v2-3b"
|
| 22 |
+
|
| 23 |
+
# Load tokenizer
|
|
|
|
| 24 |
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left", trust_remote_code=True)
|
| 25 |
+
|
| 26 |
+
# Load model with offload folder for disk storage of weights
|
| 27 |
model = AutoModelForCausalLM.from_pretrained(
|
| 28 |
model_name,
|
| 29 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, # Use float16 for GPU, float32 for CPU
|
| 30 |
+
device_map="auto", # Automatically map model to available devices (e.g., GPU if available)
|
| 31 |
+
trust_remote_code=True,
|
| 32 |
+
offload_folder="./offload_weights" # Folder to store offloaded weights
|
| 33 |
)
|
| 34 |
|
| 35 |
+
# Return text-generation pipeline
|
| 36 |
return pipeline(
|
| 37 |
task="text-generation",
|
| 38 |
model=model,
|
| 39 |
tokenizer=tokenizer,
|
| 40 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 41 |
device_map="auto",
|
| 42 |
+
return_full_text=True
|
|
|
|
| 43 |
)
|
| 44 |
|
| 45 |
+
# Initialize Dolly pipeline
|
| 46 |
generate_text = load_pipeline()
|
| 47 |
|
| 48 |
+
# Create a HuggingFace pipeline wrapper for LangChain
|
| 49 |
hf_pipeline = HuggingFacePipeline(pipeline=generate_text)
|
| 50 |
|
| 51 |
+
# Template for instruction-only prompts
|
| 52 |
+
prompt = PromptTemplate(
|
| 53 |
+
input_variables=["instruction"],
|
| 54 |
+
template="{instruction}"
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# Template for prompts with context
|
| 58 |
prompt_with_context = PromptTemplate(
|
| 59 |
input_variables=["instruction", "context"],
|
| 60 |
template="{instruction}\n\nInput:\n{context}"
|
| 61 |
)
|
| 62 |
|
| 63 |
+
# Create LLM chains
|
| 64 |
llm_chain = LLMChain(llm=hf_pipeline, prompt=prompt)
|
| 65 |
llm_context_chain = LLMChain(llm=hf_pipeline, prompt=prompt_with_context)
|
| 66 |
|
| 67 |
+
# Extracting text from .txt files
|
| 68 |
def get_text_files_content(folder):
|
| 69 |
text = ""
|
| 70 |
for filename in os.listdir(folder):
|
|
|
|
| 73 |
text += file.read() + "\n"
|
| 74 |
return text
|
| 75 |
|
| 76 |
+
# Converting text to chunks
|
| 77 |
def get_chunks(raw_text):
|
| 78 |
from langchain.text_splitter import CharacterTextSplitter
|
| 79 |
text_splitter = CharacterTextSplitter(
|
| 80 |
separator="\n",
|
| 81 |
+
chunk_size=1000, # Reduced chunk size for faster processing
|
| 82 |
+
chunk_overlap=200, # Smaller overlap for efficiency
|
| 83 |
+
length_function=len
|
| 84 |
)
|
| 85 |
+
chunks = text_splitter.split_text(raw_text)
|
| 86 |
+
return chunks
|
| 87 |
|
| 88 |
+
# Using Hugging Face embeddings model and FAISS to create vectorstore
|
| 89 |
def get_vectorstore(chunks):
|
| 90 |
embeddings = HuggingFaceEmbeddings(
|
| 91 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 92 |
+
model_kwargs={'device': 'cpu'} # Ensure embeddings use CPU
|
| 93 |
)
|
| 94 |
+
vectorstore = FAISS.from_texts(texts=chunks, embedding=embeddings)
|
| 95 |
+
return vectorstore
|
| 96 |
|
| 97 |
+
# Generating response from user queries
|
| 98 |
def handle_question(question, vectorstore=None):
|
| 99 |
if vectorstore:
|
| 100 |
+
# Reduce the number of retrieved chunks for faster processing
|
| 101 |
+
documents = vectorstore.similarity_search(question, k=2)
|
| 102 |
+
context = "\n".join([doc.page_content for doc in documents])
|
| 103 |
+
|
| 104 |
+
# Limit context to 1000 characters to speed up model inference
|
| 105 |
+
context = context[:1000]
|
| 106 |
|
| 107 |
if context:
|
| 108 |
+
result_with_context = llm_context_chain.invoke({"instruction": question, "context": context})
|
| 109 |
+
return result_with_context
|
| 110 |
|
| 111 |
+
# Fallback to instruction-only chain if no context is found
|
| 112 |
+
return llm_chain.invoke({"instruction": question})
|
| 113 |
|
| 114 |
def main():
|
| 115 |
st.title("Chat with Notes :books:")
|
| 116 |
|
| 117 |
+
# Initialize session state
|
| 118 |
if "vectorstore" not in st.session_state:
|
| 119 |
st.session_state.vectorstore = None
|
| 120 |
|
| 121 |
+
# Define folders for Current Affairs and Essays
|
| 122 |
+
data_folder = "data" # Current Affairs folders
|
| 123 |
+
essay_folder = "essays" # Essays folder
|
| 124 |
|
| 125 |
# Content type selection
|
| 126 |
content_type = st.sidebar.radio("Select Content Type:", ["Current Affairs", "Essays"])
|
| 127 |
|
| 128 |
+
# Handle Current Affairs (each subject has its own folder)
|
| 129 |
if content_type == "Current Affairs":
|
| 130 |
+
if os.path.exists(data_folder):
|
| 131 |
+
subjects = [f for f in os.listdir(data_folder) if os.path.isdir(os.path.join(data_folder, f))]
|
| 132 |
+
else:
|
| 133 |
+
subjects = []
|
| 134 |
+
# Handle Essays (all essays are in a single folder)
|
| 135 |
+
elif content_type == "Essays":
|
| 136 |
+
if os.path.exists(essay_folder):
|
| 137 |
+
subjects = [f.replace(".txt", "") for f in os.listdir(essay_folder) if f.endswith('.txt')]
|
| 138 |
+
else:
|
| 139 |
+
subjects = []
|
| 140 |
|
| 141 |
# Subject selection
|
| 142 |
selected_subject = st.sidebar.selectbox("Select a Subject:", subjects)
|
| 143 |
|
| 144 |
+
# Process selected subject
|
| 145 |
raw_text = ""
|
| 146 |
if content_type == "Current Affairs" and selected_subject:
|
| 147 |
subject_folder = os.path.join(data_folder, selected_subject)
|
| 148 |
raw_text = get_text_files_content(subject_folder)
|
| 149 |
elif content_type == "Essays" and selected_subject:
|
| 150 |
+
subject_file = os.path.join(essay_folder, selected_subject + ".txt")
|
| 151 |
if os.path.exists(subject_file):
|
| 152 |
with open(subject_file, "r", encoding="utf-8") as file:
|
| 153 |
raw_text = file.read()
|
| 154 |
|
| 155 |
+
# Display preview of notes
|
| 156 |
if raw_text:
|
| 157 |
st.subheader("Preview of Notes")
|
| 158 |
+
st.text_area("Preview Content:", value=raw_text[:2000], height=300, disabled=True) # Show a snippet of the notes
|
| 159 |
|
| 160 |
+
# Create vectorstore for Current Affairs or Essays
|
| 161 |
+
text_chunks = get_chunks(raw_text)
|
| 162 |
+
vectorstore = get_vectorstore(text_chunks)
|
| 163 |
+
st.session_state.vectorstore = vectorstore
|
| 164 |
else:
|
| 165 |
st.warning("No content available for the selected subject.")
|
| 166 |
|
| 167 |
+
# Chat interface
|
| 168 |
st.subheader("Ask Your Question")
|
| 169 |
question = st.text_input("Ask a question about your selected subject:")
|
| 170 |
if question:
|
| 171 |
if st.session_state.vectorstore:
|
| 172 |
response = handle_question(question, st.session_state.vectorstore)
|
| 173 |
st.subheader("Answer:")
|
| 174 |
+
st.write(response.get("text", "No response found."))
|
| 175 |
else:
|
| 176 |
st.warning("Please load the content for the selected subject before asking a question.")
|
| 177 |
|
| 178 |
+
if __name__ == '__main__':
|
| 179 |
main()
|