File size: 6,634 Bytes
5102822
 
49bb688
0401909
 
 
 
 
74d69bb
5102822
 
ecf2148
 
 
5102822
 
 
 
 
 
 
 
4e3fd95
74d69bb
4e3fd95
 
74d69bb
c85425f
ecf2148
74d69bb
4e3fd95
 
74d69bb
5102822
4e3fd95
5102822
c85425f
 
 
ecf2148
c85425f
4e3fd95
5102822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0401909
5102822
 
c85425f
 
5102822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c85425f
 
5102822
c85425f
 
 
 
5102822
0401909
5102822
c85425f
 
0401909
5102822
 
0d30433
5102822
 
 
 
 
5991ba4
 
 
51fcb96
 
5991ba4
5102822
5991ba4
 
 
 
 
 
 
 
 
 
 
 
51fcb96
5991ba4
5102822
 
5991ba4
0d30433
5991ba4
 
 
 
 
 
 
 
0d30433
 
 
 
 
0401909
5991ba4
 
 
 
 
 
 
5102822
0d30433
5102822
 
 
 
0d30433
 
5102822
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import torch
import streamlit as st
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_community.llms import HuggingFacePipeline
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from dotenv import load_dotenv

# Set Streamlit page configuration
st.set_page_config(page_title="Chat with Notes and AI", page_icon=":books:", layout="wide")

# Load environment variables
load_dotenv()

# Dolly-v2-3b model pipeline
@st.cache_resource
def load_pipeline():
    model_name = "databricks/dolly-v2-3b"

    # Load tokenizer
    tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left", trust_remote_code=True)

    # Load model with offload folder for disk storage of weights
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,  # Use float16 for GPU, float32 for CPU
        device_map="auto",          # Automatically map model to available devices (e.g., GPU if available)
        trust_remote_code=True,
        offload_folder="./offload_weights"  # Folder to store offloaded weights
    )

    # Return text-generation pipeline
    return pipeline(
        task="text-generation",
        model=model,
        tokenizer=tokenizer,
        torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
        device_map="auto",
        return_full_text=True
    )

# Initialize Dolly pipeline
generate_text = load_pipeline()

# Create a HuggingFace pipeline wrapper for LangChain
hf_pipeline = HuggingFacePipeline(pipeline=generate_text)

# Template for instruction-only prompts
prompt = PromptTemplate(
    input_variables=["instruction"],
    template="{instruction}"
)

# Template for prompts with context
prompt_with_context = PromptTemplate(
    input_variables=["instruction", "context"],
    template="{instruction}\n\nInput:\n{context}"
)

# Create LLM chains
llm_chain = LLMChain(llm=hf_pipeline, prompt=prompt)
llm_context_chain = LLMChain(llm=hf_pipeline, prompt=prompt_with_context)

# Extracting text from .txt files
def get_text_files_content(folder):
    text = ""
    for filename in os.listdir(folder):
        if filename.endswith('.txt'):
            with open(os.path.join(folder, filename), 'r', encoding='utf-8') as file:
                text += file.read() + "\n"
    return text

# Converting text to chunks
def get_chunks(raw_text):
    from langchain.text_splitter import CharacterTextSplitter
    text_splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=1000,  # Reduced chunk size for faster processing
        chunk_overlap=200,  # Smaller overlap for efficiency
        length_function=len
    )
    chunks = text_splitter.split_text(raw_text)
    return chunks

# Using Hugging Face embeddings model and FAISS to create vectorstore
def get_vectorstore(chunks):
    embeddings = HuggingFaceEmbeddings(
        model_name="sentence-transformers/all-MiniLM-L6-v2",
        model_kwargs={'device': 'cpu'}  # Ensure embeddings use CPU
    )
    vectorstore = FAISS.from_texts(texts=chunks, embedding=embeddings)
    return vectorstore

# Generating response from user queries
def handle_question(question, vectorstore=None):
    if vectorstore:
        # Reduce the number of retrieved chunks for faster processing
        documents = vectorstore.similarity_search(question, k=2)
        context = "\n".join([doc.page_content for doc in documents])

        # Limit context to 1000 characters to speed up model inference
        context = context[:1000]

        if context:
            result_with_context = llm_context_chain.invoke({"instruction": question, "context": context})
            return result_with_context

    # Fallback to instruction-only chain if no context is found
    return llm_chain.invoke({"instruction": question})

def main():
    st.title("Chat with Notes :books:")

    # Initialize session state
    if "vectorstore" not in st.session_state:
        st.session_state.vectorstore = None

    # Define folders for Current Affairs and Essays
    data_folder = "data"
    essay_folder = "essay"

    # Content type selection
    content_type = st.sidebar.radio("Select Content Type:", ["Current Affairs", "Essays"])

    # Handle Current Affairs (each subject has its own folder)
    if content_type == "Current Affairs":
        if os.path.exists(data_folder):
            subjects = [f for f in os.listdir(data_folder) if os.path.isdir(os.path.join(data_folder, f))]
        else:
            subjects = []
    # Handle Essays (all essays are in a single folder)
    elif content_type == "Essays":
        if os.path.exists(essay_folder):
            subjects = [f.replace(".txt", "") for f in os.listdir(essay_folder) if f.endswith('.txt')]
        else:
            subjects = []

    # Subject selection
    selected_subject = st.sidebar.selectbox("Select a Subject:", subjects)

    # Process selected subject
    raw_text = ""
    if content_type == "Current Affairs" and selected_subject:
        subject_folder = os.path.join(data_folder, selected_subject)
        raw_text = get_text_files_content(subject_folder)
    elif content_type == "Essays" and selected_subject:
        subject_file = os.path.join(essay_folder, selected_subject + ".txt")
        if os.path.exists(subject_file):
            with open(subject_file, "r", encoding="utf-8") as file:
                raw_text = file.read()

    # Display preview of notes
    if raw_text:
        st.subheader("Preview of Notes")
        st.text_area("Preview Content:", value=raw_text[:2000], height=300, disabled=True)  # Show a snippet of the notes

        # Create vectorstore for Current Affairs or Essays
        text_chunks = get_chunks(raw_text)
        vectorstore = get_vectorstore(text_chunks)
        st.session_state.vectorstore = vectorstore
    else:
        st.warning("No content available for the selected subject.")

    # Chat interface
    st.subheader("Ask Your Question")
    question = st.text_input("Ask a question about your selected subject:")
    if question:
        if st.session_state.vectorstore:
            response = handle_question(question, st.session_state.vectorstore)
            st.subheader("Answer:")
            st.write(response.get("text", "No response found."))
        else:
            st.warning("Please load the content for the selected subject before asking a question.")

if __name__ == '__main__':
    main()