#!/usr/bin/env python3 """ Whisper Model WER Evaluation - Fine-tunes vs Commercial APIs Compares local fine-tuned models against commercial STT providers via EdenAI """ import os import json import time from datetime import datetime from pathlib import Path import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline import requests import jiwer from dotenv import load_dotenv # Load environment variables from .env file load_dotenv() # Configuration AUDIO_FILE = "eval/test-audio.wav" TRUTH_FILE = "eval/truth.txt" RESULTS_DIR = "results" # Commercial providers to test via EdenAI COMMERCIAL_PROVIDERS = ["deepgram", "openai", "assembly", "gladia"] # Model configurations MODELS = { # Local fine-tuned models "whisper-base-ft": { "type": "local", "path": "/home/daniel/ai/models/stt/finetunes/daniel-whisper-base-finetune", "description": "Fine-tuned Whisper Base" }, "whisper-small-ft": { "type": "local", "path": "/home/daniel/ai/models/stt/finetunes/whisper-small-en-futo", "description": "Fine-tuned Whisper Small" }, "whisper-tiny-ft": { "type": "local", "path": "/home/daniel/ai/models/stt/finetunes/whisper-tiny-en-futo", "description": "Fine-tuned Whisper Tiny" }, "whisper-large-turbo-ft": { "type": "local", "path": "/home/daniel/ai/models/stt/finetunes/whisper-large-turbo-finetune", "description": "Fine-tuned Whisper Large Turbo" } } def load_ground_truth(truth_file): """Load ground truth transcription""" with open(truth_file, 'r') as f: return f.read().strip() def transcribe_local_model(model_path, audio_file): """Transcribe audio using a local model""" try: device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 print(f" Loading model from {model_path}...") model = AutoModelForSpeechSeq2Seq.from_pretrained( model_path, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_path) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=30, batch_size=16, return_timestamps=False, torch_dtype=torch_dtype, device=device, ) print(f" Transcribing...") result = pipe(audio_file) transcription = result["text"] # Clean up del model del processor del pipe if torch.cuda.is_available(): torch.cuda.empty_cache() return transcription.strip() except Exception as e: print(f" ERROR: {str(e)}") return None def transcribe_edenai(audio_file, providers, api_key): """Transcribe audio using EdenAI with multiple providers""" results = {} for provider in providers: print(f"\n Testing {provider}...") try: # Submit async job url = "https://api.edenai.run/v2/audio/speech_to_text_async" headers = {"Authorization": f"Bearer {api_key}"} data = { "providers": provider, "language": "en" } with open(audio_file, 'rb') as f: files = {'file': f} response = requests.post(url, data=data, files=files, headers=headers) if response.status_code != 200: print(f" ❌ Failed to submit job: {response.status_code}") print(f" Response: {response.text}") results[provider] = None continue job_data = response.json() public_id = job_data.get("public_id") if not public_id: print(f" ❌ No job ID returned") results[provider] = None continue print(f" Job ID: {public_id}") print(f" Polling for results...") # Poll for results result_url = f"https://api.edenai.run/v2/audio/speech_to_text_async/{public_id}" max_attempts = 60 attempt = 0 while attempt < max_attempts: time.sleep(2) result_response = requests.get(result_url, headers=headers) if result_response.status_code != 200: print(f" ❌ Failed to get results: {result_response.status_code}") break result_data = result_response.json() status = result_data.get("status") if status == "finished": # Extract transcription provider_result = result_data.get("results", {}).get(provider, {}) transcription = provider_result.get("text", "") if transcription: print(f" ✓ Transcription received") results[provider] = transcription.strip() else: print(f" ⚠️ No transcription in response") results[provider] = None break elif status == "failed": error = result_data.get("results", {}).get(provider, {}).get("error") print(f" ❌ Job failed: {error}") results[provider] = None break attempt += 1 if attempt % 10 == 0: print(f" Still waiting... ({attempt}/{max_attempts})") if attempt >= max_attempts: print(f" ⏱️ Timeout waiting for results") results[provider] = None except Exception as e: print(f" ❌ Error: {str(e)}") results[provider] = None return results def calculate_metrics(reference, hypothesis): """Calculate WER and other metrics""" output = jiwer.process_words(reference, hypothesis) return { "wer": output.wer, "mer": output.mer, "wil": output.wil, "wip": output.wip, "hits": output.hits, "substitutions": output.substitutions, "deletions": output.deletions, "insertions": output.insertions } def save_transcription(model_name, transcription): """Save transcription to file""" transcriptions_dir = Path(RESULTS_DIR) / "transcriptions" transcriptions_dir.mkdir(parents=True, exist_ok=True) output_file = transcriptions_dir / f"transcription_{model_name}.txt" with open(output_file, 'w') as f: f.write(transcription) return output_file def format_results_table(results): """Format results as ASCII table""" header = "| Rank | Model | Type | WER | MER | WIL | WIP |" separator = "|------|-------|------|-----|-----|-----|-----|" lines = [header, separator] for i, result in enumerate(results, 1): if result["model_type"] == "local": model_type = "Fine-tune" else: model_type = "Commercial" line = f"| {i} | {result['model_name']} | {model_type} | {result['wer']:.2%} | {result['mer']:.2%} | {result['wil']:.2%} | {result['wip']:.2%} |" lines.append(line) return "\n".join(lines) def generate_comparison_chart(results): """Generate ASCII bar chart of WER results""" lines = ["WER Comparison (lower is better)", "=" * 80, ""] max_wer = max(r['wer'] for r in results) if results else 1 max_bar_length = 60 for result in results: wer = result['wer'] bar_length = int((wer / max_wer) * max_bar_length) if max_wer > 0 else 0 bar = "█" * bar_length model_type = "FT" if result["model_type"] == "local" else "CM" line = f"{result['model_name'][:30]:<30} [{model_type}] {bar} {wer:.2%}" lines.append(line) lines.append("") lines.append("Legend: [FT] = Fine-tuned (local), [CM] = Commercial API") return "\n".join(lines) def main(): print("=" * 80) print("Whisper Model WER Evaluation - Fine-tunes vs Commercial APIs") print("=" * 80) print() # Check EdenAI API key print("Checking EdenAI API key...") api_key = os.environ.get("EDENAI_API_KEY") if not api_key: print("⚠️ Warning: EDENAI_API_KEY not set.") print(" Export EDENAI_API_KEY=your_key to enable commercial API comparison") print(" Continuing with local models only...") else: print("✓ EDENAI_API_KEY found") print() # Load ground truth print(f"Loading ground truth from {TRUTH_FILE}...") reference = load_ground_truth(TRUTH_FILE) print(f"Ground truth loaded: {len(reference.split())} words") print() # Create results directory Path(RESULTS_DIR).mkdir(exist_ok=True) # Evaluate models results = [] failed_models = [] print("Evaluating local fine-tuned models...") print("-" * 80) for model_name, config in MODELS.items(): print(f"\n{model_name} ({config['description']})") start_time = time.time() if not Path(config["path"]).exists(): print(f" ⚠️ Model path not found: {config['path']}") failed_models.append({ "model_name": model_name, "description": config["description"], "error": "Model path not found" }) continue transcription = transcribe_local_model(config["path"], AUDIO_FILE) elapsed_time = time.time() - start_time if transcription is None: failed_models.append({ "model_name": model_name, "description": config["description"], "error": "Transcription failed" }) continue # Save transcription save_transcription(model_name, transcription) print(f" Saved transcription") # Calculate metrics metrics = calculate_metrics(reference, transcription) results.append({ "model_name": model_name, "description": config["description"], "model_type": "local", "transcription": transcription, "processing_time": elapsed_time, **metrics }) print(f" WER: {metrics['wer']:.2%}") print(f" Processing time: {elapsed_time:.2f}s") # Test commercial providers via EdenAI if api_key: print("\n" + "=" * 80) print("Evaluating commercial STT providers via EdenAI...") print("-" * 80) commercial_results = transcribe_edenai(AUDIO_FILE, COMMERCIAL_PROVIDERS, api_key) for provider, transcription in commercial_results.items(): if transcription: model_name = f"{provider}-api" # Save transcription save_transcription(model_name, transcription) # Calculate metrics metrics = calculate_metrics(reference, transcription) results.append({ "model_name": model_name, "description": f"{provider.title()} STT API", "model_type": "commercial", "transcription": transcription, "processing_time": 0, # EdenAI doesn't provide this **metrics }) print(f"\n✓ {provider}: WER {metrics['wer']:.2%}") else: failed_models.append({ "model_name": f"{provider}-api", "description": f"{provider.title()} STT API", "error": "Transcription failed" }) # Sort by WER (best first) results.sort(key=lambda x: x['wer']) # Generate report timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") report_file = Path(RESULTS_DIR) / f"commercial_comparison_report_{timestamp}.txt" json_file = Path(RESULTS_DIR) / f"commercial_comparison_results_{timestamp}.json" # Generate results table results_table = format_results_table(results) # Generate comparison chart comparison_chart = generate_comparison_chart(results) # Write report with open(report_file, 'w') as f: f.write("=" * 80 + "\n") f.write("WHISPER MODEL WER EVALUATION - FINE-TUNES VS COMMERCIAL APIS\n") f.write("=" * 80 + "\n\n") f.write(f"Evaluation Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n") f.write(f"Test Audio: {AUDIO_FILE}\n") f.write(f"Ground Truth: {TRUTH_FILE}\n") f.write(f"Reference Word Count: {len(reference.split())} words\n") f.write(f"Commercial Providers: {', '.join(COMMERCIAL_PROVIDERS)}\n\n") f.write("RESULTS RANKED BY WER (BEST TO WORST)\n") f.write("=" * 80 + "\n\n") f.write(results_table + "\n\n") f.write("WER COMPARISON CHART\n") f.write("=" * 80 + "\n\n") f.write(comparison_chart + "\n\n") f.write("DETAILED METRICS\n") f.write("=" * 80 + "\n\n") for result in results: f.write(f"{result['model_name']} - {result['description']}\n") f.write(f" Type: {result['model_type'].title()}\n") f.write(f" WER: {result['wer']:.2%}\n") f.write(f" MER: {result['mer']:.2%}\n") f.write(f" WIL: {result['wil']:.2%}\n") f.write(f" WIP: {result['wip']:.2%}\n") f.write(f" Hits: {result['hits']}\n") f.write(f" Substitutions: {result['substitutions']}\n") f.write(f" Deletions: {result['deletions']}\n") f.write(f" Insertions: {result['insertions']}\n") if result['processing_time'] > 0: f.write(f" Processing Time: {result['processing_time']:.2f}s\n") f.write("\n") if failed_models: f.write("FAILED MODELS\n") f.write("=" * 80 + "\n\n") for failed in failed_models: f.write(f"{failed['model_name']} - {failed['description']}\n") f.write(f" Error: {failed['error']}\n\n") f.write("CONCLUSIONS\n") f.write("=" * 80 + "\n\n") if results: best = results[0] worst = results[-1] f.write(f"Best Performer: {best['model_name']} ({best['description']})\n") f.write(f" WER: {best['wer']:.2%}\n") f.write(f" Type: {best['model_type'].title()}\n\n") f.write(f"Worst Performer: {worst['model_name']} ({worst['description']})\n") f.write(f" WER: {worst['wer']:.2%}\n") f.write(f" Type: {worst['model_type'].title()}\n\n") # Compare best fine-tune vs commercial local_models = [r for r in results if r['model_type'] == 'local'] commercial_models = [r for r in results if r['model_type'] == 'commercial'] if local_models and commercial_models: best_local = local_models[0] best_commercial = commercial_models[0] f.write(f"Best Fine-tune: {best_local['model_name']} - WER {best_local['wer']:.2%}\n") f.write(f"Best Commercial: {best_commercial['model_name']} - WER {best_commercial['wer']:.2%}\n\n") if best_local['wer'] < best_commercial['wer']: improvement = ((best_commercial['wer'] - best_local['wer']) / best_commercial['wer']) * 100 f.write(f"🎯 Fine-tuning Improvement: {improvement:.1f}% better WER than best commercial API\n") else: difference = ((best_local['wer'] - best_commercial['wer']) / best_commercial['wer']) * 100 f.write(f"Commercial API Advantage: {difference:.1f}% better WER than best fine-tune\n") # Save JSON results with open(json_file, 'w') as f: json.dump({ "timestamp": timestamp, "audio_file": AUDIO_FILE, "truth_file": TRUTH_FILE, "reference_word_count": len(reference.split()), "commercial_providers": COMMERCIAL_PROVIDERS, "results": results, "failed_models": failed_models }, f, indent=2) # Copy to latest/ latest_dir = Path(RESULTS_DIR) / "latest" latest_dir.mkdir(exist_ok=True) import shutil shutil.copy(report_file, latest_dir / "commercial_comparison_report.txt") shutil.copy(json_file, latest_dir / "commercial_comparison_results.json") with open(latest_dir / "commercial_comparison_chart.txt", 'w') as f: f.write(comparison_chart) # Print summary print("\n" + "=" * 80) print("EVALUATION COMPLETE") print("=" * 80) print(f"\nResults saved to:") print(f" Report: {report_file}") print(f" JSON: {json_file}") print(f" Latest: {latest_dir}/") print(f"\nEvaluated {len(results)} models successfully") if failed_models: print(f"Failed to evaluate {len(failed_models)} models") print() print(results_table) print() if __name__ == "__main__": main()