File size: 17,436 Bytes
502d51d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
#!/usr/bin/env python3
"""
Whisper Model WER Evaluation - Fine-tunes vs Commercial APIs
Compares local fine-tuned models against commercial STT providers via EdenAI
"""
import os
import json
import time
from datetime import datetime
from pathlib import Path
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import requests
import jiwer
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Configuration
AUDIO_FILE = "eval/test-audio.wav"
TRUTH_FILE = "eval/truth.txt"
RESULTS_DIR = "results"
# Commercial providers to test via EdenAI
COMMERCIAL_PROVIDERS = ["deepgram", "openai", "assembly", "gladia"]
# Model configurations
MODELS = {
# Local fine-tuned models
"whisper-base-ft": {
"type": "local",
"path": "/home/daniel/ai/models/stt/finetunes/daniel-whisper-base-finetune",
"description": "Fine-tuned Whisper Base"
},
"whisper-small-ft": {
"type": "local",
"path": "/home/daniel/ai/models/stt/finetunes/whisper-small-en-futo",
"description": "Fine-tuned Whisper Small"
},
"whisper-tiny-ft": {
"type": "local",
"path": "/home/daniel/ai/models/stt/finetunes/whisper-tiny-en-futo",
"description": "Fine-tuned Whisper Tiny"
},
"whisper-large-turbo-ft": {
"type": "local",
"path": "/home/daniel/ai/models/stt/finetunes/whisper-large-turbo-finetune",
"description": "Fine-tuned Whisper Large Turbo"
}
}
def load_ground_truth(truth_file):
"""Load ground truth transcription"""
with open(truth_file, 'r') as f:
return f.read().strip()
def transcribe_local_model(model_path, audio_file):
"""Transcribe audio using a local model"""
try:
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
print(f" Loading model from {model_path}...")
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_path,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_path)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=False,
torch_dtype=torch_dtype,
device=device,
)
print(f" Transcribing...")
result = pipe(audio_file)
transcription = result["text"]
# Clean up
del model
del processor
del pipe
if torch.cuda.is_available():
torch.cuda.empty_cache()
return transcription.strip()
except Exception as e:
print(f" ERROR: {str(e)}")
return None
def transcribe_edenai(audio_file, providers, api_key):
"""Transcribe audio using EdenAI with multiple providers"""
results = {}
for provider in providers:
print(f"\n Testing {provider}...")
try:
# Submit async job
url = "https://api.edenai.run/v2/audio/speech_to_text_async"
headers = {"Authorization": f"Bearer {api_key}"}
data = {
"providers": provider,
"language": "en"
}
with open(audio_file, 'rb') as f:
files = {'file': f}
response = requests.post(url, data=data, files=files, headers=headers)
if response.status_code != 200:
print(f" β Failed to submit job: {response.status_code}")
print(f" Response: {response.text}")
results[provider] = None
continue
job_data = response.json()
public_id = job_data.get("public_id")
if not public_id:
print(f" β No job ID returned")
results[provider] = None
continue
print(f" Job ID: {public_id}")
print(f" Polling for results...")
# Poll for results
result_url = f"https://api.edenai.run/v2/audio/speech_to_text_async/{public_id}"
max_attempts = 60
attempt = 0
while attempt < max_attempts:
time.sleep(2)
result_response = requests.get(result_url, headers=headers)
if result_response.status_code != 200:
print(f" β Failed to get results: {result_response.status_code}")
break
result_data = result_response.json()
status = result_data.get("status")
if status == "finished":
# Extract transcription
provider_result = result_data.get("results", {}).get(provider, {})
transcription = provider_result.get("text", "")
if transcription:
print(f" β Transcription received")
results[provider] = transcription.strip()
else:
print(f" β οΈ No transcription in response")
results[provider] = None
break
elif status == "failed":
error = result_data.get("results", {}).get(provider, {}).get("error")
print(f" β Job failed: {error}")
results[provider] = None
break
attempt += 1
if attempt % 10 == 0:
print(f" Still waiting... ({attempt}/{max_attempts})")
if attempt >= max_attempts:
print(f" β±οΈ Timeout waiting for results")
results[provider] = None
except Exception as e:
print(f" β Error: {str(e)}")
results[provider] = None
return results
def calculate_metrics(reference, hypothesis):
"""Calculate WER and other metrics"""
output = jiwer.process_words(reference, hypothesis)
return {
"wer": output.wer,
"mer": output.mer,
"wil": output.wil,
"wip": output.wip,
"hits": output.hits,
"substitutions": output.substitutions,
"deletions": output.deletions,
"insertions": output.insertions
}
def save_transcription(model_name, transcription):
"""Save transcription to file"""
transcriptions_dir = Path(RESULTS_DIR) / "transcriptions"
transcriptions_dir.mkdir(parents=True, exist_ok=True)
output_file = transcriptions_dir / f"transcription_{model_name}.txt"
with open(output_file, 'w') as f:
f.write(transcription)
return output_file
def format_results_table(results):
"""Format results as ASCII table"""
header = "| Rank | Model | Type | WER | MER | WIL | WIP |"
separator = "|------|-------|------|-----|-----|-----|-----|"
lines = [header, separator]
for i, result in enumerate(results, 1):
if result["model_type"] == "local":
model_type = "Fine-tune"
else:
model_type = "Commercial"
line = f"| {i} | {result['model_name']} | {model_type} | {result['wer']:.2%} | {result['mer']:.2%} | {result['wil']:.2%} | {result['wip']:.2%} |"
lines.append(line)
return "\n".join(lines)
def generate_comparison_chart(results):
"""Generate ASCII bar chart of WER results"""
lines = ["WER Comparison (lower is better)", "=" * 80, ""]
max_wer = max(r['wer'] for r in results) if results else 1
max_bar_length = 60
for result in results:
wer = result['wer']
bar_length = int((wer / max_wer) * max_bar_length) if max_wer > 0 else 0
bar = "β" * bar_length
model_type = "FT" if result["model_type"] == "local" else "CM"
line = f"{result['model_name'][:30]:<30} [{model_type}] {bar} {wer:.2%}"
lines.append(line)
lines.append("")
lines.append("Legend: [FT] = Fine-tuned (local), [CM] = Commercial API")
return "\n".join(lines)
def main():
print("=" * 80)
print("Whisper Model WER Evaluation - Fine-tunes vs Commercial APIs")
print("=" * 80)
print()
# Check EdenAI API key
print("Checking EdenAI API key...")
api_key = os.environ.get("EDENAI_API_KEY")
if not api_key:
print("β οΈ Warning: EDENAI_API_KEY not set.")
print(" Export EDENAI_API_KEY=your_key to enable commercial API comparison")
print(" Continuing with local models only...")
else:
print("β EDENAI_API_KEY found")
print()
# Load ground truth
print(f"Loading ground truth from {TRUTH_FILE}...")
reference = load_ground_truth(TRUTH_FILE)
print(f"Ground truth loaded: {len(reference.split())} words")
print()
# Create results directory
Path(RESULTS_DIR).mkdir(exist_ok=True)
# Evaluate models
results = []
failed_models = []
print("Evaluating local fine-tuned models...")
print("-" * 80)
for model_name, config in MODELS.items():
print(f"\n{model_name} ({config['description']})")
start_time = time.time()
if not Path(config["path"]).exists():
print(f" β οΈ Model path not found: {config['path']}")
failed_models.append({
"model_name": model_name,
"description": config["description"],
"error": "Model path not found"
})
continue
transcription = transcribe_local_model(config["path"], AUDIO_FILE)
elapsed_time = time.time() - start_time
if transcription is None:
failed_models.append({
"model_name": model_name,
"description": config["description"],
"error": "Transcription failed"
})
continue
# Save transcription
save_transcription(model_name, transcription)
print(f" Saved transcription")
# Calculate metrics
metrics = calculate_metrics(reference, transcription)
results.append({
"model_name": model_name,
"description": config["description"],
"model_type": "local",
"transcription": transcription,
"processing_time": elapsed_time,
**metrics
})
print(f" WER: {metrics['wer']:.2%}")
print(f" Processing time: {elapsed_time:.2f}s")
# Test commercial providers via EdenAI
if api_key:
print("\n" + "=" * 80)
print("Evaluating commercial STT providers via EdenAI...")
print("-" * 80)
commercial_results = transcribe_edenai(AUDIO_FILE, COMMERCIAL_PROVIDERS, api_key)
for provider, transcription in commercial_results.items():
if transcription:
model_name = f"{provider}-api"
# Save transcription
save_transcription(model_name, transcription)
# Calculate metrics
metrics = calculate_metrics(reference, transcription)
results.append({
"model_name": model_name,
"description": f"{provider.title()} STT API",
"model_type": "commercial",
"transcription": transcription,
"processing_time": 0, # EdenAI doesn't provide this
**metrics
})
print(f"\nβ {provider}: WER {metrics['wer']:.2%}")
else:
failed_models.append({
"model_name": f"{provider}-api",
"description": f"{provider.title()} STT API",
"error": "Transcription failed"
})
# Sort by WER (best first)
results.sort(key=lambda x: x['wer'])
# Generate report
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
report_file = Path(RESULTS_DIR) / f"commercial_comparison_report_{timestamp}.txt"
json_file = Path(RESULTS_DIR) / f"commercial_comparison_results_{timestamp}.json"
# Generate results table
results_table = format_results_table(results)
# Generate comparison chart
comparison_chart = generate_comparison_chart(results)
# Write report
with open(report_file, 'w') as f:
f.write("=" * 80 + "\n")
f.write("WHISPER MODEL WER EVALUATION - FINE-TUNES VS COMMERCIAL APIS\n")
f.write("=" * 80 + "\n\n")
f.write(f"Evaluation Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
f.write(f"Test Audio: {AUDIO_FILE}\n")
f.write(f"Ground Truth: {TRUTH_FILE}\n")
f.write(f"Reference Word Count: {len(reference.split())} words\n")
f.write(f"Commercial Providers: {', '.join(COMMERCIAL_PROVIDERS)}\n\n")
f.write("RESULTS RANKED BY WER (BEST TO WORST)\n")
f.write("=" * 80 + "\n\n")
f.write(results_table + "\n\n")
f.write("WER COMPARISON CHART\n")
f.write("=" * 80 + "\n\n")
f.write(comparison_chart + "\n\n")
f.write("DETAILED METRICS\n")
f.write("=" * 80 + "\n\n")
for result in results:
f.write(f"{result['model_name']} - {result['description']}\n")
f.write(f" Type: {result['model_type'].title()}\n")
f.write(f" WER: {result['wer']:.2%}\n")
f.write(f" MER: {result['mer']:.2%}\n")
f.write(f" WIL: {result['wil']:.2%}\n")
f.write(f" WIP: {result['wip']:.2%}\n")
f.write(f" Hits: {result['hits']}\n")
f.write(f" Substitutions: {result['substitutions']}\n")
f.write(f" Deletions: {result['deletions']}\n")
f.write(f" Insertions: {result['insertions']}\n")
if result['processing_time'] > 0:
f.write(f" Processing Time: {result['processing_time']:.2f}s\n")
f.write("\n")
if failed_models:
f.write("FAILED MODELS\n")
f.write("=" * 80 + "\n\n")
for failed in failed_models:
f.write(f"{failed['model_name']} - {failed['description']}\n")
f.write(f" Error: {failed['error']}\n\n")
f.write("CONCLUSIONS\n")
f.write("=" * 80 + "\n\n")
if results:
best = results[0]
worst = results[-1]
f.write(f"Best Performer: {best['model_name']} ({best['description']})\n")
f.write(f" WER: {best['wer']:.2%}\n")
f.write(f" Type: {best['model_type'].title()}\n\n")
f.write(f"Worst Performer: {worst['model_name']} ({worst['description']})\n")
f.write(f" WER: {worst['wer']:.2%}\n")
f.write(f" Type: {worst['model_type'].title()}\n\n")
# Compare best fine-tune vs commercial
local_models = [r for r in results if r['model_type'] == 'local']
commercial_models = [r for r in results if r['model_type'] == 'commercial']
if local_models and commercial_models:
best_local = local_models[0]
best_commercial = commercial_models[0]
f.write(f"Best Fine-tune: {best_local['model_name']} - WER {best_local['wer']:.2%}\n")
f.write(f"Best Commercial: {best_commercial['model_name']} - WER {best_commercial['wer']:.2%}\n\n")
if best_local['wer'] < best_commercial['wer']:
improvement = ((best_commercial['wer'] - best_local['wer']) / best_commercial['wer']) * 100
f.write(f"π― Fine-tuning Improvement: {improvement:.1f}% better WER than best commercial API\n")
else:
difference = ((best_local['wer'] - best_commercial['wer']) / best_commercial['wer']) * 100
f.write(f"Commercial API Advantage: {difference:.1f}% better WER than best fine-tune\n")
# Save JSON results
with open(json_file, 'w') as f:
json.dump({
"timestamp": timestamp,
"audio_file": AUDIO_FILE,
"truth_file": TRUTH_FILE,
"reference_word_count": len(reference.split()),
"commercial_providers": COMMERCIAL_PROVIDERS,
"results": results,
"failed_models": failed_models
}, f, indent=2)
# Copy to latest/
latest_dir = Path(RESULTS_DIR) / "latest"
latest_dir.mkdir(exist_ok=True)
import shutil
shutil.copy(report_file, latest_dir / "commercial_comparison_report.txt")
shutil.copy(json_file, latest_dir / "commercial_comparison_results.json")
with open(latest_dir / "commercial_comparison_chart.txt", 'w') as f:
f.write(comparison_chart)
# Print summary
print("\n" + "=" * 80)
print("EVALUATION COMPLETE")
print("=" * 80)
print(f"\nResults saved to:")
print(f" Report: {report_file}")
print(f" JSON: {json_file}")
print(f" Latest: {latest_dir}/")
print(f"\nEvaluated {len(results)} models successfully")
if failed_models:
print(f"Failed to evaluate {len(failed_models)} models")
print()
print(results_table)
print()
if __name__ == "__main__":
main()
|