danielrosehill's picture
updated
ef9649a
raw
history blame
9.28 kB
"""
Dynamic loader for system prompt components.
Automatically loads all prompt components from their respective directories.
"""
import os
import importlib.util
import re
def load_module_from_file(file_path):
"""Load a Python module from a file path."""
module_name = os.path.splitext(os.path.basename(file_path))[0]
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return module
def load_prompts_from_directory(directory):
"""Load all prompt components from a directory."""
prompts = {}
if not os.path.exists(directory):
return prompts
for file in os.listdir(directory):
if file.endswith('.py') and file != '__init__.py':
file_path = os.path.join(directory, file)
try:
module = load_module_from_file(file_path)
name = os.path.splitext(file)[0]
if hasattr(module, 'PROMPT'):
prompts[name] = module.PROMPT.strip()
except Exception as e:
print(f"Error loading {file}: {str(e)}")
return prompts
# Get the base directory for prompt components
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
# Load all prompt components
MODEL_PERSONALITIES = load_prompts_from_directory(
os.path.join(BASE_DIR, 'model_personalities')
)
USER_GEOLOCATION = load_prompts_from_directory(
os.path.join(BASE_DIR, 'user_geolocation')
)
USER_PERSONALITY = load_prompts_from_directory(
os.path.join(BASE_DIR, 'user_personality')
)
USER_WORLDVIEW = load_prompts_from_directory(
os.path.join(BASE_DIR, 'user_worldview')
)
USER_POLITICAL_LEANING = load_prompts_from_directory(
os.path.join(BASE_DIR, 'user_political_leaning')
)
MODEL_FORMALITY = load_prompts_from_directory(
os.path.join(BASE_DIR, 'model_formality')
)
MODEL_RESPONSE_STYLE = load_prompts_from_directory(
os.path.join(BASE_DIR, 'model_response_style')
)
MODEL_EXPERTISE = load_prompts_from_directory(
os.path.join(BASE_DIR, 'model_expertise')
)
MODEL_LANGUAGE_STYLE = load_prompts_from_directory(
os.path.join(BASE_DIR, 'model_language_style')
)
MODEL_IDENTITY = load_prompts_from_directory(
os.path.join(BASE_DIR, 'model_identity')
)
USER_LEARNING_STYLE = load_prompts_from_directory(
os.path.join(BASE_DIR, 'user_learning_style')
)
USER_COMMUNICATION_PACE = load_prompts_from_directory(
os.path.join(BASE_DIR, 'user_communication_pace')
)
USER_OUTPUT_PREFERENCE = load_prompts_from_directory(
os.path.join(BASE_DIR, 'user_output_preference')
)
def truncate_to_word_length(text: str, target_length: int) -> str:
"""
Adjust text to reach target word length by expanding or truncating as needed.
Args:
text: The text to truncate
target_length: Target number of words
Returns:
Truncated text maintaining key elements
"""
if not text or target_length <= 0:
return text
sections = text.split("\n\n")
words = text.split()
current_length = len(words)
# If we're already at target length, return as is
if current_length == target_length:
return text
# If we need to expand
if current_length < target_length:
words_to_add = target_length - current_length
expanded_sections = []
for section in sections:
# Add elaborative phrases to reach target length
expanded = section
if "You are" in section:
expanded += " Your purpose is to assist users effectively and professionally."
if "approach" in section:
expanded += " This approach ensures optimal results and user satisfaction."
expanded_sections.append(expanded)
return "\n\n".join(expanded_sections)
# If we need to reduce
words_per_section = target_length // len(sections)
adjusted_sections = [" ".join(section.split()[:words_per_section]) for section in sections]
return "\n\n".join(adjusted_sections)
def combine_prompts(personality: str, geolocation: str, user_type: str,
worldview: str, political_leaning: str = "neutral",
formality: str = "neutral",
response_style: str = "neutral",
data_format: str = "neutral",
output_preference: str = "neutral",
expertise: str = "neutral",
learning_style: str = "neutral",
communication_pace: str = "neutral",
language_style: str = "neutral",
identity_type: str = "neutral",
ai_name: str = None,
backstory: str = None,
user_name: str = None,
age_group: str = None,
occupation: str = None,
target_length: int = None) -> str:
"""
Combine selected prompts from different categories into a cohesive system prompt.
Args:
personality: Key from MODEL_PERSONALITIES
geolocation: Key from USER_GEOLOCATION
user_type: Key from USER_PERSONALITY
worldview: Key from USER_WORLDVIEW
political_leaning: Key from USER_POLITICAL_LEANING
formality: Key from MODEL_FORMALITY
response_style: Key from MODEL_RESPONSE_STYLE
expertise: Key from MODEL_EXPERTISE
learning_style: Key from USER_LEARNING_STYLE
communication_pace: Key from USER_COMMUNICATION_PACE
target_length: Optional target word length for the final prompt
Returns:
Combined system prompt
"""
# Only include non-neutral components
components = [
f"You are {ai_name}. " if ai_name else "",
backstory + "\n" if backstory else "",
f"The user's name is {user_name}. " if user_name else "",
f"The user is in the age group {age_group}. " if age_group else "",
f"The user's occupation is {occupation}. " if occupation else "",
MODEL_IDENTITY.get(identity_type, "")
if identity_type != "neutral" else "",
MODEL_PERSONALITIES.get(personality, "")
if personality != "neutral" else "",
USER_GEOLOCATION.get(geolocation, "")
if geolocation != "neutral" else "",
USER_PERSONALITY.get(user_type, "")
if user_type != "neutral" else "",
USER_WORLDVIEW.get(worldview, "")
if worldview != "neutral" else "",
USER_POLITICAL_LEANING.get(political_leaning, "")
if political_leaning != "neutral" else "",
MODEL_FORMALITY.get(formality, "")
if formality != "neutral" else "",
MODEL_RESPONSE_STYLE.get(response_style, "")
if response_style != "neutral" else "",
USER_OUTPUT_PREFERENCE.get(output_preference, "")
if output_preference != "neutral" else "",
USER_OUTPUT_PREFERENCE.get(data_format, "")
if data_format != "neutral" else "",
MODEL_EXPERTISE.get(expertise, "")
if expertise != "neutral" else "",
USER_LEARNING_STYLE.get(learning_style, "")
if learning_style != "neutral" else "",
USER_COMMUNICATION_PACE.get(communication_pace, "")
if communication_pace != "neutral" else "",
MODEL_LANGUAGE_STYLE.get(language_style, "")
if language_style != "neutral" else ""
]
# Filter out empty strings
components = [c for c in components if c]
if not components:
return "No prompt components selected."
# Join components
combined = "\n\n".join(components)
# Truncate if target length specified
if target_length and target_length > 0:
return truncate_to_word_length(combined, target_length)
return combined
def get_available_prompts():
"""Get all available prompt options for each category."""
return {
# Model characteristics and preferences
"model_personalities": ["neutral"] + [k for k in MODEL_PERSONALITIES.keys() if k != "neutral"],
"model_formality": ["neutral", "very_informal", "informal", "formal", "extremely_formal"],
"model_response_style": ["neutral", "concise", "balanced", "detailed", "socratic"],
"model_expertise": ["neutral", "generalist", "specialist", "academic", "practical"],
"model_language_style": ["neutral", "shakespearean", "middle_ages", "rhyming"],
"model_identity": ["neutral", "bot", "alien", "sloth"],
# User characteristics
"user_geolocation": ["neutral"] + [k for k in USER_GEOLOCATION.keys() if k != "neutral"],
"user_personality": ["neutral"] + [k for k in USER_PERSONALITY.keys() if k != "neutral"],
"user_worldview": ["neutral"] + [k for k in USER_WORLDVIEW.keys() if k != "neutral"],
"user_political_leaning": ["neutral", "conservative", "progressive"],
"user_learning_style": ["neutral", "visual", "practical", "theoretical", "sequential"],
"user_communication_pace": ["neutral", "methodical", "dynamic", "interactive", "contemplative"],
"user_output_preference": ["neutral"] + [k for k in USER_OUTPUT_PREFERENCE.keys() if k != "neutral"]
}