import gradio as gr import openai import os import re from transformers import pipeline title = "System Prompt Depersonalizer" description = """ This app transforms personalized system prompts into generalized versions that can be shared with a wider audience. You can use either OpenAI's API (requires API key) or Hugging Face's models (free). """ # Validate OpenAI API key format def validate_api_key(api_key): if not api_key: return False # Check if it starts with "sk-" and has appropriate length return bool(re.match(r'^sk-[A-Za-z0-9]{32,}$', api_key)) # Define depersonalization function using OpenAI (v1.0+ syntax) def depersonalize_prompt_openai(prompt, api_key): if not validate_api_key(api_key): return "Error: Invalid API key format. OpenAI API keys should start with 'sk-' followed by at least 32 characters." try: client = openai.OpenAI(api_key=api_key) response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": """ You are an AI assistant specializing in transforming personalized system prompts into generalized versions that can be shared with and used by a wider audience. Your task is to identify and remove personal elements while preserving the core functionality and purpose of the original prompt. Task Breakdown: 1. Analyze the Original Prompt - Identify personalized elements such as: * Names (e.g., Daniel Rosehill) * Specific hardware or software configurations * Location-specific references * Unique use cases or workflows * Personal preferences or requirements 2. Generalize the Content - Replace personal references with generic alternatives - Broaden specific technical requirements when appropriate - Maintain the core functionality and purpose - Preserve the overall structure and flow of instructions 3. Maintain Quality - Preserve clear instructions and constraints - Keep specialized knowledge and capabilities - Ensure the prompt remains coherent and effective - Retain unique value propositions of the original Output Format: Provide only the depersonalized system prompt in Markdown format inside a code block. Do not include any other commentary or explanation. """}, {"role": "user", "content": prompt} ], max_tokens=1200 ) return response.choices[0].message.content except Exception as e: error_msg = str(e) if "API key" in error_msg.lower() or "authentication" in error_msg.lower(): return "Error: Your API key was rejected by OpenAI. Please check that you've entered a valid API key." else: return f"Error: {error_msg}" # Define depersonalization function using Hugging Face models def depersonalize_prompt_hf(prompt): try: # Use a text generation pipeline with a suitable model generator = pipeline('text2text-generation', model='google/flan-t5-base') # Create a prompt that instructs the model to depersonalize instruction = """ Transform this personalized system prompt into a generalized version by removing personal elements (names, specific hardware/software, locations, unique use cases, personal preferences) while preserving the core functionality and purpose: """ full_prompt = instruction + "\n\n" + prompt # Generate the depersonalized version result = generator(full_prompt, max_length=1024, do_sample=False) return result[0]['generated_text'] except Exception as e: return f"Error with Hugging Face model: {str(e)}" # Function to route to the appropriate depersonalization method def depersonalize_prompt(prompt, api_key, use_openai): if use_openai: if not api_key.strip(): return "Error: OpenAI API key is required when using OpenAI. Please enter your API key or switch to Hugging Face." return depersonalize_prompt_openai(prompt, api_key) else: return depersonalize_prompt_hf(prompt) # Build Gradio UI with gr.Blocks() as demo: gr.Markdown(f"# {title}") gr.Markdown(description) with gr.Row(): use_openai = gr.Checkbox(label="Use OpenAI (requires API key)", value=True) api_key_input = gr.Textbox( label="OpenAI API Key", placeholder="sk-...", type="password", visible=True ) input_prompt = gr.Textbox( label="Personalized System Prompt", placeholder="Paste your personalized system prompt here...", lines=10 ) output_prompt = gr.Textbox( label="Depersonalized System Prompt", lines=10, interactive=True ) with gr.Row(): run_btn = gr.Button("Depersonalize") copy_btn = gr.Button("Copy Result") # Update API key input visibility based on checkbox def update_api_key_visibility(use_openai): return gr.update(visible=use_openai) use_openai.change( fn=update_api_key_visibility, inputs=[use_openai], outputs=[api_key_input] ) run_btn.click( fn=depersonalize_prompt, inputs=[input_prompt, api_key_input, use_openai], outputs=output_prompt ) copy_btn.click( fn=lambda x: x, inputs=[output_prompt], outputs=[], js="navigator.clipboard.writeText(args[0]); alert('Copied!');" ) demo.launch()