Spaces:
Build error
Build error
| import streamlit as st | |
| import pandas as pd | |
| import re | |
| import time | |
| import os | |
| from io import StringIO | |
| import pyperclip | |
| import json | |
| import requests | |
| st.set_page_config(page_title="Prompt Output Separator", page_icon="βοΈ", layout="wide", initial_sidebar_state="expanded") | |
| if 'api_key' not in st.session_state: | |
| st.session_state.api_key = None | |
| if 'history' not in st.session_state: | |
| st.session_state.history = [] | |
| if 'prompt' not in st.session_state: | |
| st.session_state.prompt = "" | |
| if 'output' not in st.session_state: | |
| st.session_state.output = "" | |
| if 'title' not in st.session_state: | |
| st.session_state.title = "" | |
| if 'mode' not in st.session_state: | |
| st.session_state.mode = 'light' | |
| def count_text_stats(text): | |
| words = len(text.split()) | |
| chars = len(text) | |
| return words, chars | |
| def analyze_with_llm(text): | |
| if not st.session_state.api_key: | |
| st.error("Please provide an OpenAI API key in the sidebar") | |
| return None, None, None | |
| try: | |
| headers = { | |
| "Authorization": f"Bearer {st.session_state.api_key}", | |
| "Content-Type": "application/json" | |
| } | |
| data = { | |
| "model": "gpt-4", | |
| "messages": [ | |
| { | |
| "role": "system", | |
| "content": """You are a text separator. Your ONLY job is to split the input text into its original prompt and response components. | |
| CRITICAL RULES: | |
| - DO NOT summarize or modify ANY text | |
| - Return the EXACT original text split into two parts | |
| - Make NO changes to the content | |
| - Preserve ALL formatting and whitespace | |
| Return ONLY a JSON object with these fields: | |
| - title: brief descriptive title (max 6 words) | |
| - prompt: the EXACT, COMPLETE first part of the conversation | |
| - output: the EXACT, COMPLETE response/answer part""" | |
| }, | |
| { | |
| "role": "user", | |
| "content": f"Split this text into its original parts with NO modifications: {text}" | |
| } | |
| ], | |
| "temperature": 0 | |
| } | |
| response = requests.post( | |
| "https://api.openai.com/v1/chat/completions", | |
| headers=headers, | |
| json=data | |
| ) | |
| if response.status_code == 200: | |
| result = response.json()['choices'][0]['message']['content'] | |
| try: | |
| parsed = json.loads(result) | |
| # Verify no content was lost | |
| original_words = len(text.split()) | |
| result_words = len((parsed.get("prompt", "") + parsed.get("output", "")).split()) | |
| if result_words < original_words * 0.9: # Allow for 10% difference due to splitting | |
| st.error("Content was modified during processing. Using basic split instead.") | |
| parts = text.split('\n\n', 1) | |
| if len(parts) == 2: | |
| return "Untitled Conversation", parts[0].strip(), parts[1].strip() | |
| return "Untitled Conversation", text.strip(), "" | |
| return parsed.get("title"), parsed.get("prompt"), parsed.get("output") | |
| except json.JSONDecodeError: | |
| st.error("Failed to parse LLM response as JSON") | |
| return None, None, None | |
| else: | |
| st.error(f"API request failed with status code: {response.status_code}") | |
| st.error(f"Response: {response.text}") | |
| return None, None, None | |
| except Exception as e: | |
| st.error(f"Error analyzing text: {str(e)}") | |
| return None, None, None | |
| def separate_prompt_output(text): | |
| if not text: | |
| return "", "", "" | |
| if st.session_state.api_key: | |
| title, prompt, output = analyze_with_llm(text) | |
| if all(v is not None for v in [title, prompt, output]): | |
| return title, prompt, output | |
| parts = text.split('\n\n', 1) | |
| if len(parts) == 2: | |
| return "Untitled Conversation", parts[0].strip(), parts[1].strip() | |
| return "Untitled Conversation", text.strip(), "" | |
| def process_column(column): | |
| processed_data = [] | |
| for item in column: | |
| title, prompt, output = separate_prompt_output(str(item)) | |
| processed_data.append({"Title": title, "Prompt": prompt, "Output": output}) | |
| return pd.DataFrame(processed_data) | |
| with st.sidebar: | |
| st.image("https://img.icons8.com/color/96/000000/chat.png", width=50) | |
| st.markdown("## π οΈ Configuration") | |
| api_key = st.text_input("Enter OpenAI API Key", type="password", help="Get your API key from platform.openai.com") | |
| if api_key: | |
| st.session_state.api_key = api_key | |
| st.markdown("---") | |
| st.markdown("## π¨ Appearance") | |
| dark_mode = st.checkbox("Dark Mode", value=st.session_state.mode == 'dark') | |
| st.session_state.mode = 'dark' if dark_mode else 'light' | |
| st.title("βοΈ Prompt Output Separator") | |
| st.markdown("Utility to assist with separating prompts and outputs when they are recorded in a unified block of text.") | |
| tabs = st.tabs(["π Paste Text", "π File Processing", "π History"]) | |
| with tabs[0]: | |
| st.subheader("Paste Prompt and Output") | |
| input_container = st.container() | |
| with input_container: | |
| input_text = st.text_area("Paste your conversation here...", height=200, placeholder="Paste your conversation here. The tool will automatically separate the prompt from the output.", help="Enter the text you want to separate into prompt and output.") | |
| if st.button("π Process", use_container_width=True) and input_text: | |
| with st.spinner("Processing..."): | |
| title, prompt, output = separate_prompt_output(input_text) | |
| st.session_state.title = title | |
| st.session_state.prompt = prompt | |
| st.session_state.output = output | |
| st.session_state.history.append(input_text) | |
| st.markdown("### π Suggested Title") | |
| title_area = st.text_area("", value=st.session_state.get('title', ""), height=70, key="title_area", help="AI-generated title based on the conversation content") | |
| st.markdown("### π Prompt") | |
| prompt_area = st.text_area("", value=st.session_state.get('prompt', ""), height=200, key="prompt_area", help="The extracted prompt will appear here") | |
| prompt_words, prompt_chars = count_text_stats(st.session_state.get('prompt', "")) | |
| st.markdown(f"<p class='stats-text'>Words: {prompt_words} | Characters: {prompt_chars}</p>", unsafe_allow_html=True) | |
| if st.button("π Copy Prompt", use_container_width=True): | |
| pyperclip.copy(st.session_state.get('prompt', "")) | |
| st.success("Copied prompt to clipboard!") | |
| st.markdown("### π€ Output") | |
| output_area = st.text_area("", value=st.session_state.get('output', ""), height=200, key="output_area", help="The extracted output will appear here") | |
| output_words, output_chars = count_text_stats(st.session_state.get('output', "")) | |
| st.markdown(f"<p class='stats-text'>Words: {output_words} | Characters: {output_chars}</p>", unsafe_allow_html=True) | |
| if st.button("π Copy Output", use_container_width=True): | |
| pyperclip.copy(st.session_state.get('output', "")) | |
| st.success("Copied output to clipboard!") | |
| with tabs[1]: | |
| st.subheader("Process File") | |
| uploaded_file = st.file_uploader("Choose a file", type=['txt', 'csv']) | |
| if uploaded_file is not None: | |
| try: | |
| if uploaded_file.type == "text/csv": | |
| df = pd.read_csv(uploaded_file) | |
| st.write("Select the column containing the conversations:") | |
| column = st.selectbox("Column", df.columns.tolist()) | |
| if st.button("Process CSV"): | |
| with st.spinner("Processing..."): | |
| result_df = process_column(df[column]) | |
| st.write(result_df) | |
| st.download_button( | |
| "Download Processed CSV", | |
| result_df.to_csv(index=False).encode('utf-8'), | |
| "processed_conversations.csv", | |
| "text/csv", | |
| key='download-csv' | |
| ) | |
| else: | |
| content = StringIO(uploaded_file.getvalue().decode("utf-8")).read() | |
| if st.button("Process Text File"): | |
| with st.spinner("Processing..."): | |
| title, prompt, output = separate_prompt_output(content) | |
| st.session_state.title = title | |
| st.session_state.prompt = prompt | |
| st.session_state.output = output | |
| st.session_state.history.append(content) | |
| st.experimental_rerun() | |
| except Exception as e: | |
| st.error(f"Error processing file: {str(e)}") | |
| with tabs[2]: | |
| st.subheader("Processing History") | |
| if st.session_state.history: | |
| if st.button("ποΈ Clear History", type="secondary"): | |
| st.session_state.history = [] | |
| st.experimental_rerun() | |
| for idx, item in enumerate(reversed(st.session_state.history)): | |
| with st.expander(f"Entry {len(st.session_state.history) - idx}", expanded=False): | |
| st.text_area("Content", value=item, height=150, key=f"history_{idx}", disabled=True) | |
| else: | |
| st.info("π‘ No processing history available yet. Process some text to see it here.") | |
| st.markdown("---") | |
| st.markdown("<div style='text-align: center'><p>Created by <a href='https://github.com/danielrosehill/Prompt-And-Output-Separator'>Daniel Rosehill</a></p></div>", unsafe_allow_html=True) | |
| if st.session_state.mode == 'dark': | |
| st.markdown(""" | |
| <style> | |
| body { | |
| color: #fff; | |
| background-color: #262730; | |
| } | |
| .stTextInput, .stTextArea, .stNumberInput, .stSelectbox, .stRadio, .stCheckbox, .stSlider, .stDateInput, .stTimeInput { | |
| background-color: #3d3d4d; | |
| color: #fff; | |
| } | |
| .stButton>button { | |
| background-color: #5c5c7a; | |
| color: white; | |
| } | |
| .stButton>button:hover { | |
| background-color: #6e6e8a; | |
| color: white; | |
| } | |
| .streamlit-expanderHeader { | |
| background-color: #3d3d4d !important; | |
| color: #fff !important; | |
| } | |
| .streamlit-expanderContent { | |
| background-color: #3d3d4d !important; | |
| } | |
| .streamlit-container { | |
| background-color: #262730; | |
| } | |
| .stAlert { | |
| background-color: #3d3d4d !important; | |
| color: #fff !important; | |
| } | |
| .stats-text { | |
| color: #aaa !important; | |
| } | |
| .css-10trblm { | |
| color: #fff !important; | |
| } | |
| .css-16idsys { | |
| color: #fff !important; | |
| } | |
| .css-1vq4p4l { | |
| color: #fff !important; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) |