import ee ''' 0 Good quality fire 1 Good quality fire-free land 2 Invalid due to opaque cloud 3 Invalid due to surface type or sunglint or LZA threshold exceeded or off earth or missing input data 4 Invalid due to bad input data 5 Invalid due to algorithm failure''' # Bit-masking BitMask_0 = 1 << 0 BitMask_1 = 1 << 1 BitMask_2 = 1 << 2 BitMask_3 = 1 << 3 BitMask_4 = 1 << 4 BitMask_5 = 1 << 5 BitMask_6 = 1 << 6 BitMask_7 = 1 << 7 BitMask_8 = 1 << 8 BitMask_9 = 1 << 9 def GcalcNBR (goesImg, aoi): #day = ee.Date(eachImg.get('system:time_start')).get('day','America/Los_Angeles') fireMode = goesImg.select('fireMode') fireMin = goesImg.select('fireMin') CMI_QF3 = goesImg.select('DQF_C03').int() CMI_QF6 = goesImg.select('DQF_C06').int() # To include active fire pixels - fireMin.lt(2)\ for next line QF_Mask = (fireMin.eq(1)\ .Or(fireMin.gt(3)))\ .And(CMI_QF3.lt(2))\ .And(CMI_QF6.lt(2))\ .rename('QFmask'); GOESm = goesImg.select(['CMI_C03','CMI_C06']).updateMask(QF_Mask) NBR = GOESm.normalizedDifference(['CMI_C03', 'CMI_C06']).toFloat().rename('NBR') return goesImg.addBands([NBR,QF_Mask]) def GcalcCCsingle (goesImg): fireDQF = goesImg.select('DQF').int() CMI_QF3 = goesImg.select('DQF_C03').int() CMI_QF6 = goesImg.select('DQF_C06').int() #Right now, cloud mask is excluding clouds and water; active fire, bad data and fire free are unmasked. NBR mask exlcudes fire F_Mask = fireDQF.eq(0) C_Mask = (fireDQF.lt(2).Or(fireDQF.gt(2))).rename('C_Mask') #.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('C_Mask') QF_Mask = (fireDQF.eq(1).Or(fireDQF.gt(3)))\ .And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('QFmask') GOESmasked = goesImg.select(['CMI_C03','CMI_C06']).updateMask(QF_Mask) NBRmasked = GOESmasked.normalizedDifference(['CMI_C03', 'CMI_C06']).toFloat().rename('NBR') cloudMasked = goesImg.select('CMI_C03').updateMask(C_Mask).toFloat().rename('CC') fireMasked = goesImg.select('CMI_C03').updateMask(F_Mask).toFloat().rename('FC') return goesImg.addBands([NBRmasked,cloudMasked, fireMasked,QF_Mask,C_Mask]) '''Parameter Array Name Value Bit(s) = Value Sun Glint QF1 Surface Reflectance None 6-7 = 00 Low Sun Mask QF1 Surface Reflectance High 5 = 0 Day/Night QF1 Surface Reflectance Day 4 =0 Cloud Detection QF1 Surface Reflectance Confident Clear 2-3 = 00 or Problably Clear 2-3 = 01 Cloud Mask Quality QF1 Surface Reflectance High or Medium 0-1 = 10 or 11 Snow/Ice QF2 Surface Reflectance No Snow or Ice 5 = 0 Cloud Shadow QF2 Surface Reflectance No Cloud Shadow 3 = 0 LandWater QF2 Surface Reflectance Land, Snow, Arctic, Antarctic or Greenland, Desert 0-2 = 011, 100, 101, 110, 111 Thin Cirrus Flag QF7 Surface Reflectance No Thin Cirrus 4 = 0 Aerosol Quantity QF7 Surface Reflectance Climatology, Low or Medium 2-3 = 00, 01 or 10 Adjacent to Cloud QF7 Surface Reflectance Not Adjacent to Cloud 1 = 0''' def VcalcNBR (VIIRSimg): QF1 = VIIRSimg.select('QF1').int() QF2 = VIIRSimg.select('QF2').int() QF7 = VIIRSimg.select('QF7').int() QF_Mask = (QF1.bitwiseAnd(BitMask_3).eq(0)).And\ ((QF2.bitwiseAnd(BitMask_2).eq(4)).Or((QF2.bitwiseAnd(BitMask_1).eq(0)))).And\ (QF2.bitwiseAnd(BitMask_5).eq(0)).rename('QFmask'); VIIRSm = VIIRSimg.select(['I2','M11']).updateMask(QF_Mask); NBR = VIIRSm.normalizedDifference(['I2','M11']).toFloat().rename('NBR') return VIIRSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR) ''' Bit 1: Dilated Cloud Bit 2: Cirrus (high confidence) Bit 3: Cloud Bit 4: Cloud Shadow Bit 5: Snow Bit 6: Clear (0: Cloud or Dilated Cloud bits are set, 1: Cloud and Dilated Cloud bits are not set) Bit 7: Water Bits 8-9: Cloud Confidence (0: None, 1: Low, 2: Medium, 3: High) Bits 10-11: Cloud Shadow Confidence (0: None, 1: Low, 2: Medium, 3: High) Bits 12-13: Snow/Ice Confidence (0: None, 1: Low, 2: Medium, 3: High) Bits 14-15: Cirrus Confidence (0: None, 1: Low, 2: Medium, 3: High)''' def LcalcNBR (LSimg): QApixel = LSimg.select('QA_PIXEL').int() QF_Mask =(QApixel.bitwiseAnd(BitMask_3).eq(0)).And\ (QApixel.bitwiseAnd(BitMask_5).eq(0)).And\ (QApixel.bitwiseAnd(BitMask_7).eq(0)).rename('QFmask'); LSmasked = LSimg.select(['SR_B5','SR_B7']).updateMask(QF_Mask); NBR = LSmasked.normalizedDifference(['SR_B5','SR_B7']).toFloat().rename('NBR') return LSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR) ''' 1 Saturated or defective 2 Dark Area Pixels 3 Cloud Shadows 4 Vegetation 5 Bare Soils 6 Water 7 Clouds Low Probability / Unclassified 8 Clouds Medium Probability 9 Clouds High Probability 10 Cirrus 11 Snow / Ice''' def ScalcNBR (sentImg): SCL = sentImg.select('SCL'); QF_Mask =(SCL.neq(6)).And\ (SCL.neq(8)).And\ (SCL.neq(9)).And\ (SCL.neq(11))\ .rename('QFmask'); sentMasked = sentImg.select(['B8A','B12']).updateMask(QF_Mask); #B8 is another option- broadband NIR NBR = sentMasked.normalizedDifference(['B8A','B12']).toFloat().rename('NBR') return sentImg.addBands(NBR).addBands(QF_Mask).addBands(SCL)#.set('avgNBR', avgNBR)