Spaces:
Sleeping
Sleeping
Delete burn_mapper
Browse files- burn_mapper/.DS_Store +0 -0
- burn_mapper/.gitattributes +0 -35
- burn_mapper/.github/workflows/sync-hf.yml +0 -20
- burn_mapper/.gitignore +0 -161
- burn_mapper/Dockerfile +0 -30
- burn_mapper/LICENSE +0 -21
- burn_mapper/README.md +0 -58
- burn_mapper/__init__.py +0 -0
- burn_mapper/pages/Home.py +0 -44
- burn_mapper/pages/__init__.py +0 -0
- burn_mapper/pages/__pycache__/NBR_calculations.cpython-312.pyc +0 -0
- burn_mapper/pages/current_fires.py +0 -399
- burn_mapper/pages/historical_fires.py +0 -429
- burn_mapper/requirements.txt +0 -6
- burn_mapper/utils/NBR_calculations.py +0 -130
- burn_mapper/utils/__init__.py +0 -0
burn_mapper/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
burn_mapper/.gitattributes
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
burn_mapper/.github/workflows/sync-hf.yml
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
name: Sync to Hugging Face hub
|
2 |
-
on:
|
3 |
-
push:
|
4 |
-
branches: [main]
|
5 |
-
|
6 |
-
# to run this workflow manually from the Actions tab
|
7 |
-
workflow_dispatch:
|
8 |
-
|
9 |
-
jobs:
|
10 |
-
sync-to-hub:
|
11 |
-
runs-on: ubuntu-latest
|
12 |
-
steps:
|
13 |
-
- uses: actions/checkout@v3
|
14 |
-
with:
|
15 |
-
fetch-depth: 0
|
16 |
-
lfs: true
|
17 |
-
- name: Push to hub
|
18 |
-
env:
|
19 |
-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
20 |
-
run: git push --force https://giswqs:[email protected]/spaces/giswqs/solara-geemap main
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
burn_mapper/.gitignore
DELETED
@@ -1,161 +0,0 @@
|
|
1 |
-
# Byte-compiled / optimized / DLL files
|
2 |
-
__pycache__/
|
3 |
-
*.py[cod]
|
4 |
-
*$py.class
|
5 |
-
|
6 |
-
# C extensions
|
7 |
-
*.so
|
8 |
-
|
9 |
-
# Distribution / packaging
|
10 |
-
.Python
|
11 |
-
build/
|
12 |
-
develop-eggs/
|
13 |
-
dist/
|
14 |
-
downloads/
|
15 |
-
eggs/
|
16 |
-
.eggs/
|
17 |
-
lib/
|
18 |
-
lib64/
|
19 |
-
parts/
|
20 |
-
sdist/
|
21 |
-
var/
|
22 |
-
wheels/
|
23 |
-
share/python-wheels/
|
24 |
-
*.egg-info/
|
25 |
-
.installed.cfg
|
26 |
-
*.egg
|
27 |
-
MANIFEST
|
28 |
-
private/
|
29 |
-
|
30 |
-
# PyInstaller
|
31 |
-
# Usually these files are written by a python script from a template
|
32 |
-
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
-
*.manifest
|
34 |
-
*.spec
|
35 |
-
|
36 |
-
# Installer logs
|
37 |
-
pip-log.txt
|
38 |
-
pip-delete-this-directory.txt
|
39 |
-
|
40 |
-
# Unit test / coverage reports
|
41 |
-
htmlcov/
|
42 |
-
.tox/
|
43 |
-
.nox/
|
44 |
-
.coverage
|
45 |
-
.coverage.*
|
46 |
-
.cache
|
47 |
-
nosetests.xml
|
48 |
-
coverage.xml
|
49 |
-
*.cover
|
50 |
-
*.py,cover
|
51 |
-
.hypothesis/
|
52 |
-
.pytest_cache/
|
53 |
-
cover/
|
54 |
-
|
55 |
-
# Translations
|
56 |
-
*.mo
|
57 |
-
*.pot
|
58 |
-
|
59 |
-
# Django stuff:
|
60 |
-
*.log
|
61 |
-
local_settings.py
|
62 |
-
db.sqlite3
|
63 |
-
db.sqlite3-journal
|
64 |
-
|
65 |
-
# Flask stuff:
|
66 |
-
instance/
|
67 |
-
.webassets-cache
|
68 |
-
|
69 |
-
# Scrapy stuff:
|
70 |
-
.scrapy
|
71 |
-
|
72 |
-
# Sphinx documentation
|
73 |
-
docs/_build/
|
74 |
-
|
75 |
-
# PyBuilder
|
76 |
-
.pybuilder/
|
77 |
-
target/
|
78 |
-
|
79 |
-
# Jupyter Notebook
|
80 |
-
.ipynb_checkpoints
|
81 |
-
|
82 |
-
# IPython
|
83 |
-
profile_default/
|
84 |
-
ipython_config.py
|
85 |
-
|
86 |
-
# pyenv
|
87 |
-
# For a library or package, you might want to ignore these files since the code is
|
88 |
-
# intended to run in multiple environments; otherwise, check them in:
|
89 |
-
# .python-version
|
90 |
-
|
91 |
-
# pipenv
|
92 |
-
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
93 |
-
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
94 |
-
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
95 |
-
# install all needed dependencies.
|
96 |
-
#Pipfile.lock
|
97 |
-
|
98 |
-
# poetry
|
99 |
-
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
100 |
-
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
101 |
-
# commonly ignored for libraries.
|
102 |
-
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
103 |
-
#poetry.lock
|
104 |
-
|
105 |
-
# pdm
|
106 |
-
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
107 |
-
#pdm.lock
|
108 |
-
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
109 |
-
# in version control.
|
110 |
-
# https://pdm.fming.dev/#use-with-ide
|
111 |
-
.pdm.toml
|
112 |
-
|
113 |
-
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
114 |
-
__pypackages__/
|
115 |
-
|
116 |
-
# Celery stuff
|
117 |
-
celerybeat-schedule
|
118 |
-
celerybeat.pid
|
119 |
-
|
120 |
-
# SageMath parsed files
|
121 |
-
*.sage.py
|
122 |
-
|
123 |
-
# Environments
|
124 |
-
.env
|
125 |
-
.venv
|
126 |
-
env/
|
127 |
-
venv/
|
128 |
-
ENV/
|
129 |
-
env.bak/
|
130 |
-
venv.bak/
|
131 |
-
|
132 |
-
# Spyder project settings
|
133 |
-
.spyderproject
|
134 |
-
.spyproject
|
135 |
-
|
136 |
-
# Rope project settings
|
137 |
-
.ropeproject
|
138 |
-
|
139 |
-
# mkdocs documentation
|
140 |
-
/site
|
141 |
-
|
142 |
-
# mypy
|
143 |
-
.mypy_cache/
|
144 |
-
.dmypy.json
|
145 |
-
dmypy.json
|
146 |
-
|
147 |
-
# Pyre type checker
|
148 |
-
.pyre/
|
149 |
-
|
150 |
-
# pytype static type analyzer
|
151 |
-
.pytype/
|
152 |
-
|
153 |
-
# Cython debug symbols
|
154 |
-
cython_debug/
|
155 |
-
|
156 |
-
# PyCharm
|
157 |
-
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
158 |
-
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
159 |
-
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
160 |
-
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
161 |
-
#.idea/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
burn_mapper/Dockerfile
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
FROM jupyter/base-notebook:latest
|
2 |
-
|
3 |
-
# Install required packages
|
4 |
-
RUN mamba install -c conda-forge leafmap geopandas localtileserver -y && \
|
5 |
-
fix-permissions "${CONDA_DIR}" && \
|
6 |
-
fix-permissions "/home/${NB_USER}"
|
7 |
-
|
8 |
-
# Copy the requirements file and install dependencies
|
9 |
-
COPY requirements.txt .
|
10 |
-
RUN pip install -r requirements.txt
|
11 |
-
|
12 |
-
# Copy the entire project directory into the container
|
13 |
-
COPY . /home/${NB_USER}
|
14 |
-
|
15 |
-
# Set the working directory
|
16 |
-
WORKDIR /home/${NB_USER}
|
17 |
-
|
18 |
-
# Set the PROJ_LIB environment variable
|
19 |
-
ENV PROJ_LIB='/opt/conda/share/proj'
|
20 |
-
|
21 |
-
# Ensure the notebook user owns the home directory
|
22 |
-
USER root
|
23 |
-
RUN chown -R ${NB_UID} ${HOME}
|
24 |
-
USER ${NB_USER}
|
25 |
-
|
26 |
-
# Expose the port for Solara
|
27 |
-
EXPOSE 8765
|
28 |
-
|
29 |
-
# Run the Solara app
|
30 |
-
CMD ["solara", "run", "pages", "--host=0.0.0.0"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
burn_mapper/LICENSE
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
MIT License
|
2 |
-
|
3 |
-
Copyright (c) 2023 Open Geospatial Solutions
|
4 |
-
|
5 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
-
of this software and associated documentation files (the "Software"), to deal
|
7 |
-
in the Software without restriction, including without limitation the rights
|
8 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
-
copies of the Software, and to permit persons to whom the Software is
|
10 |
-
furnished to do so, subject to the following conditions:
|
11 |
-
|
12 |
-
The above copyright notice and this permission notice shall be included in all
|
13 |
-
copies or substantial portions of the Software.
|
14 |
-
|
15 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
-
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
burn_mapper/README.md
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: Solara Geemap
|
3 |
-
emoji: 🏃
|
4 |
-
colorFrom: blue
|
5 |
-
colorTo: purple
|
6 |
-
sdk: docker
|
7 |
-
pinned: false
|
8 |
-
license: mit
|
9 |
-
app_port: 8765
|
10 |
-
---
|
11 |
-
|
12 |
-
## Earth Engine Web Apps
|
13 |
-
|
14 |
-
### Introduction
|
15 |
-
|
16 |
-
**A collection of Earth Engine web apps developed using [Solara](https://github.com/widgetti/solara) and geemap**
|
17 |
-
|
18 |
-
- Web App: <https://giswqs-solara-geemap.hf.space>
|
19 |
-
- GitHub: <https://github.com/opengeos/solara-geemap>
|
20 |
-
- Hugging Face: <https://huggingface.co/spaces/giswqs/solara-geemap>
|
21 |
-
|
22 |
-
### How to deploy this app on Hugging Face Spaces
|
23 |
-
|
24 |
-
1. Go to <https://huggingface.co/spaces/giswqs/solara-geemap/tree/main> and duplicate the space to your own space.
|
25 |
-
|
26 |
-

|
27 |
-
|
28 |
-
2. You need to set `EARTHENGINE_TOKEN` in order to use Earth Engine. The token value should be copied from the following file depending on your operating system:
|
29 |
-
|
30 |
-
```text
|
31 |
-
Windows: C:\\Users\\USERNAME\\.config\\earthengine\\credentials
|
32 |
-
Linux: /home/USERNAME/.config/earthengine/credentials
|
33 |
-
MacOS: /Users/USERNAME/.config/earthengine/credentials
|
34 |
-
```
|
35 |
-
|
36 |
-
Simply open the file and copy **ALL** the content to the `EARTHENGINE_TOKEN` environment variable.
|
37 |
-
|
38 |
-

|
39 |
-
|
40 |
-

|
41 |
-
|
42 |
-
Alternatively, you can run the following code to retrieve your Earth Engine token:
|
43 |
-
|
44 |
-
```python
|
45 |
-
import geemap
|
46 |
-
geemap.get_ee_token()
|
47 |
-
```
|
48 |
-
|
49 |
-
Copy all the content of the printed token and set it as the `EARTHENGINE_TOKEN` environment variable.
|
50 |
-
|
51 |
-
3. After the space is built successfully, click the `Embed this Space` menu and find the `Direct URL` for the app, such as <https://giswqs-solara-geemap.hf.space>.
|
52 |
-
|
53 |
-

|
54 |
-
|
55 |
-

|
56 |
-
|
57 |
-
4. Add your own apps (\*.py) to the `pages` folder.
|
58 |
-
5. Commit and push your changes to the repository. Wait for the space to be built successfully.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
burn_mapper/__init__.py
DELETED
File without changes
|
burn_mapper/pages/Home.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
import solara
|
2 |
-
|
3 |
-
@solara.component
|
4 |
-
def Page():
|
5 |
-
with solara.Column(align="center"):
|
6 |
-
markdown = """
|
7 |
-
## Real-time wildfire burn mapping
|
8 |
-
|
9 |
-
### About the project
|
10 |
-
|
11 |
-
**A proof of concept illustrating wildfire burn severity maps with emerging clarity while the fires progress.
|
12 |
-
Target users are forecasters and emergency managers responding to post-fire risks including debris flows and landslides.**
|
13 |
-
|
14 |
-
More project description, etc, etc.
|
15 |
-
|
16 |
-
**Case Studies from 2020 and 2021 Western US wildfire seasons **
|
17 |
-
|
18 |
-
- August Complex, CA (2020)
|
19 |
-
- Cameron Peak, CO (2020)
|
20 |
-
- Dixie Fire, CA (2021)
|
21 |
-
- North Complex, CA (2020)
|
22 |
-
|
23 |
-
|
24 |
-
**Current 2024 wildfires over 10,000 acres **
|
25 |
-
|
26 |
-
### How to use the app
|
27 |
-
|
28 |
-
1. Select the fire from the drop-down menu
|
29 |
-
|
30 |
-
2. Export image to Google Drive as a geotiff
|
31 |
-
|
32 |
-
3.
|
33 |
-
|
34 |
-
### Support
|
35 |
-
|
36 |
-
Initial funding for wildland burn scar mapping came through the NOAA JPSS/RRPG Fire and Smoke Initiative.
|
37 |
-
This supported the initial tests of BRIDGE maps using dNDVI. Subsequent funding supported the development of dNBR mapping and an effort
|
38 |
-
to tie support the near real-time distribution of incident-based fire detection and related satellite imagery products through the Next Generation Fire System (NGFS).
|
39 |
-
Current funding from the NOAA Weather Program Office (WPO) is supporting the refinement of our Google Earth Engine App (GEE)
|
40 |
-
and integration of GEE burn scar output with AWIPS (see example above) for Weather Forecast Offices, Regional Offices, and the Weather Prediction Center.
|
41 |
-
|
42 |
-
"""
|
43 |
-
|
44 |
-
solara.Markdown(markdown)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
burn_mapper/pages/__init__.py
DELETED
File without changes
|
burn_mapper/pages/__pycache__/NBR_calculations.cpython-312.pyc
DELETED
Binary file (6.87 kB)
|
|
burn_mapper/pages/current_fires.py
DELETED
@@ -1,399 +0,0 @@
|
|
1 |
-
import ee
|
2 |
-
import geemap
|
3 |
-
import solara
|
4 |
-
import ipywidgets as widgets
|
5 |
-
import datetime
|
6 |
-
|
7 |
-
#from NBR_calculations import GcalcNBR, VcalcNBR, LcalcNBR, ScalcNBR, GcalcCCsingle
|
8 |
-
import requests
|
9 |
-
|
10 |
-
# Bit-masking
|
11 |
-
BitMask_0 = 1 << 0
|
12 |
-
BitMask_1 = 1 << 1
|
13 |
-
BitMask_2 = 1 << 2
|
14 |
-
BitMask_3 = 1 << 3
|
15 |
-
BitMask_4 = 1 << 4
|
16 |
-
BitMask_5 = 1 << 5
|
17 |
-
BitMask_6 = 1 << 6
|
18 |
-
BitMask_7 = 1 << 7
|
19 |
-
BitMask_8 = 1 << 8
|
20 |
-
BitMask_9 = 1 << 9
|
21 |
-
|
22 |
-
def GcalcCCsingle (goesImg):
|
23 |
-
|
24 |
-
fireDQF = goesImg.select('DQF').int()
|
25 |
-
CMI_QF3 = goesImg.select('DQF_C03').int()
|
26 |
-
CMI_QF6 = goesImg.select('DQF_C06').int()
|
27 |
-
|
28 |
-
#Right now, cloud mask is excluding clouds and water; active fire, bad data and fire free are unmasked. NBR mask exlcudes fire
|
29 |
-
F_Mask = fireDQF.eq(0)
|
30 |
-
C_Mask = (fireDQF.lt(2).Or(fireDQF.gt(2))).rename('C_Mask')
|
31 |
-
#.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('C_Mask')
|
32 |
-
QF_Mask = (fireDQF.eq(1).Or(fireDQF.gt(3)))\
|
33 |
-
.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('QFmask')
|
34 |
-
|
35 |
-
GOESmasked = goesImg.select(['CMI_C03','CMI_C06']).updateMask(QF_Mask)
|
36 |
-
NBRmasked = GOESmasked.normalizedDifference(['CMI_C03', 'CMI_C06']).toFloat().rename('NBR')
|
37 |
-
cloudMasked = goesImg.select('CMI_C03').updateMask(C_Mask).toFloat().rename('CC')
|
38 |
-
fireMasked = goesImg.select('CMI_C03').updateMask(F_Mask).toFloat().rename('FC')
|
39 |
-
|
40 |
-
return goesImg.addBands([NBRmasked,cloudMasked, fireMasked,QF_Mask,C_Mask])
|
41 |
-
|
42 |
-
'''Parameter Array Name Value Bit(s) = Value
|
43 |
-
Sun Glint QF1 Surface Reflectance None 6-7 = 00
|
44 |
-
Low Sun Mask QF1 Surface Reflectance High 5 = 0
|
45 |
-
Day/Night QF1 Surface Reflectance Day 4 =0
|
46 |
-
Cloud Detection QF1 Surface Reflectance Confident Clear 2-3 = 00 or Problably Clear 2-3 = 01
|
47 |
-
Cloud Mask Quality QF1 Surface Reflectance High or Medium 0-1 = 10 or 11
|
48 |
-
Snow/Ice QF2 Surface Reflectance No Snow or Ice 5 = 0
|
49 |
-
Cloud Shadow QF2 Surface Reflectance No Cloud Shadow 3 = 0
|
50 |
-
LandWater QF2 Surface Reflectance Land, Snow, Arctic, Antarctic or Greenland, Desert 0-2 = 011, 100, 101, 110, 111
|
51 |
-
Thin Cirrus Flag QF7 Surface Reflectance No Thin Cirrus 4 = 0
|
52 |
-
Aerosol Quantity QF7 Surface Reflectance Climatology, Low or Medium 2-3 = 00, 01 or 10
|
53 |
-
Adjacent to Cloud QF7 Surface Reflectance Not Adjacent to Cloud 1 = 0'''
|
54 |
-
|
55 |
-
def VcalcNBR (VIIRSimg):
|
56 |
-
|
57 |
-
QF1 = VIIRSimg.select('QF1').int()
|
58 |
-
QF2 = VIIRSimg.select('QF2').int()
|
59 |
-
QF7 = VIIRSimg.select('QF7').int()
|
60 |
-
|
61 |
-
QF_Mask = (QF1.bitwiseAnd(BitMask_3).eq(0)).And\
|
62 |
-
((QF2.bitwiseAnd(BitMask_2).eq(4)).Or((QF2.bitwiseAnd(BitMask_1).eq(0)))).And\
|
63 |
-
(QF2.bitwiseAnd(BitMask_5).eq(0)).rename('QFmask');
|
64 |
-
|
65 |
-
VIIRSm = VIIRSimg.select(['I2','M11']).updateMask(QF_Mask);
|
66 |
-
NBR = VIIRSm.normalizedDifference(['I2','M11']).toFloat().rename('NBR')
|
67 |
-
return VIIRSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR)
|
68 |
-
|
69 |
-
''' Bit 1: Dilated Cloud
|
70 |
-
Bit 2: Cirrus (high confidence)
|
71 |
-
Bit 3: Cloud
|
72 |
-
Bit 4: Cloud Shadow
|
73 |
-
Bit 5: Snow
|
74 |
-
Bit 6: Clear (0: Cloud or Dilated Cloud bits are set, 1: Cloud and Dilated Cloud bits are not set)
|
75 |
-
Bit 7: Water
|
76 |
-
Bits 8-9: Cloud Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
77 |
-
Bits 10-11: Cloud Shadow Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
78 |
-
Bits 12-13: Snow/Ice Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
79 |
-
Bits 14-15: Cirrus Confidence (0: None, 1: Low, 2: Medium, 3: High)'''
|
80 |
-
|
81 |
-
def LcalcNBR (LSimg):
|
82 |
-
QApixel = LSimg.select('QA_PIXEL').int()
|
83 |
-
QF_Mask =(QApixel.bitwiseAnd(BitMask_3).eq(0)).And\
|
84 |
-
(QApixel.bitwiseAnd(BitMask_5).eq(0)).And\
|
85 |
-
(QApixel.bitwiseAnd(BitMask_7).eq(0)).rename('QFmask');
|
86 |
-
|
87 |
-
LSmasked = LSimg.select(['SR_B5','SR_B7']).updateMask(QF_Mask);
|
88 |
-
NBR = LSmasked.normalizedDifference(['SR_B5','SR_B7']).toFloat().rename('NBR')
|
89 |
-
return LSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR)
|
90 |
-
|
91 |
-
''' 1 Saturated or defective
|
92 |
-
2 Dark Area Pixels
|
93 |
-
3 Cloud Shadows
|
94 |
-
4 Vegetation
|
95 |
-
5 Bare Soils
|
96 |
-
6 Water
|
97 |
-
7 Clouds Low Probability / Unclassified
|
98 |
-
8 Clouds Medium Probability
|
99 |
-
9 Clouds High Probability
|
100 |
-
10 Cirrus
|
101 |
-
11 Snow / Ice'''
|
102 |
-
|
103 |
-
def ScalcNBR (sentImg):
|
104 |
-
SCL = sentImg.select('SCL');
|
105 |
-
QF_Mask =(SCL.neq(6)).And\
|
106 |
-
(SCL.neq(8)).And\
|
107 |
-
(SCL.neq(9)).And\
|
108 |
-
(SCL.neq(11))\
|
109 |
-
.rename('QFmask');
|
110 |
-
sentMasked = sentImg.select(['B8A','B12']).updateMask(QF_Mask); #B8 is another option- broadband NIR
|
111 |
-
NBR = sentMasked.normalizedDifference(['B8A','B12']).toFloat().rename('NBR')
|
112 |
-
return sentImg.addBands(NBR).addBands(QF_Mask).addBands(SCL)#.set('avgNBR', avgNBR)
|
113 |
-
|
114 |
-
#createDates = NIFC_perims_716.aggregate_array('attr_Cre_1')
|
115 |
-
#incidentIDs = NIFC_perims_716.aggregate_array('poly_Incid')
|
116 |
-
#fireList = incidentIDs.getInfo()
|
117 |
-
fireList = wildfire_names = [ "FRESNO JUNE LIGHTNING COMPLEX", "Larch Creek","Deadman","Cow Valley","0404 RV LONE ROCK",
|
118 |
-
"PIONEER","South Fork", "Deer Springs","Basin","Lake","Horse Gulch","Falls","Silver King","Indios"]
|
119 |
-
selected_fire = solara.reactive(fireList[6])
|
120 |
-
dNBRvisParams = {'min': 0.0,'max': 0.8, 'palette': ['green', 'yellow','orange','red']}
|
121 |
-
today = datetime.datetime.today().strftime('%Y-%m-%d')
|
122 |
-
|
123 |
-
class Map(geemap.Map):
|
124 |
-
def __init__(self, **kwargs):
|
125 |
-
super().__init__(**kwargs)
|
126 |
-
self.add_basemap('OpenStreetMap')
|
127 |
-
|
128 |
-
self.customize_ee_data(selected_fire.value, today)
|
129 |
-
self.add_selector()
|
130 |
-
self.add_dwnldButton()
|
131 |
-
self.add("layer_manager")
|
132 |
-
self.remove("draw_control")
|
133 |
-
|
134 |
-
|
135 |
-
def customize_ee_data(self, fireID, elapDays):
|
136 |
-
NIFC_perims_716 = ee.FeatureCollection('projects/ovcrge-ssec-burn-scar-map-c116/assets/NIFC_perimeters_7-16')
|
137 |
-
fire = NIFC_perims_716.filter(ee.Filter.eq('poly_Incid',fireID)).first()
|
138 |
-
timestamp = fire.get('attr_Cre_1')
|
139 |
-
geom = fire.geometry()
|
140 |
-
|
141 |
-
startDate = ee.Date(timestamp)#.format('YYYY-MM-dd')
|
142 |
-
endDate = ee.Date.parse('YYYY-MM-dd', str(today))
|
143 |
-
|
144 |
-
boundingBox = ee.Geometry(geom.buffer(5000).bounds())
|
145 |
-
|
146 |
-
elapDayNum = ee.Number(10)
|
147 |
-
elapDay_plusOne = elapDayNum.add(ee.Number(1))
|
148 |
-
|
149 |
-
def calc_nbr(pre_start, pre_stop, post_start, post_stop, bbox, goes):
|
150 |
-
|
151 |
-
def MergeBands (eachImage):
|
152 |
-
oneImage = ee.Image.cat(eachImage.get('CMI'), eachImage.get('FDC'))
|
153 |
-
return oneImage
|
154 |
-
displacementImg18 = ee.Image.load('projects/ee-losos/assets/G18-F-meter-offset_GEE')
|
155 |
-
y_dif = displacementImg18.select([1])
|
156 |
-
x_dif = displacementImg18.select([0]).multiply(-1)
|
157 |
-
displacement18 = ee.Image([x_dif, y_dif])
|
158 |
-
|
159 |
-
displacementImg16 = ee.Image.load('projects/ee-losos/assets/G16-F-meter-offset_GEE')
|
160 |
-
y_dif = displacementImg16.select([1])
|
161 |
-
x_dif = displacementImg16.select([0]).multiply(-1)
|
162 |
-
displacement16 = ee.Image([x_dif, y_dif]);
|
163 |
-
|
164 |
-
preCMIcol = ee.ImageCollection(f"NOAA/GOES/{goes}/MCMIPF").filter(ee.Filter.date(pre_start, pre_stop))\
|
165 |
-
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
166 |
-
preFDCcol = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(pre_start, pre_stop))\
|
167 |
-
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
168 |
-
postCMIcol = ee.ImageCollection(f"NOAA/GOES/{goes}/MCMIPF").filter(ee.Filter.date(post_start, post_stop))\
|
169 |
-
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
170 |
-
postFDCcol = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(post_start, post_stop))\
|
171 |
-
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
172 |
-
|
173 |
-
prejoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
174 |
-
primary = preCMIcol,
|
175 |
-
secondary = preFDCcol,
|
176 |
-
condition = ee.Filter.maxDifference(
|
177 |
-
difference = 10, #milliseconds
|
178 |
-
leftField = 'system:time_start',
|
179 |
-
rightField = 'system:time_start',))
|
180 |
-
preMiddayGOEScol = ee.ImageCollection(prejoinedGOES.map(lambda object: MergeBands(object)))
|
181 |
-
preMiddayGOEScol = preMiddayGOEScol.map(GcalcCCsingle)
|
182 |
-
pre_meanNBR = preMiddayGOEScol.select(['NBR']).mean()
|
183 |
-
pre_meanNBR = pre_meanNBR.multiply(1.18).subtract(0.12)
|
184 |
-
|
185 |
-
postjoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
186 |
-
primary = postCMIcol,
|
187 |
-
secondary = postFDCcol,
|
188 |
-
condition = ee.Filter.maxDifference(
|
189 |
-
difference = 10, #milliseconds
|
190 |
-
leftField = 'system:time_start',
|
191 |
-
rightField = 'system:time_start',))
|
192 |
-
postMiddayGOEScol = ee.ImageCollection(postjoinedGOES.map(lambda object: MergeBands(object)))
|
193 |
-
postMiddayGOEScol = postMiddayGOEScol.map(GcalcCCsingle)
|
194 |
-
post_meanNBR = postMiddayGOEScol.select(['NBR']).mean()
|
195 |
-
post_meanNBR = post_meanNBR.multiply(1.18).subtract(0.12)
|
196 |
-
|
197 |
-
dNBR_goes17 = pre_meanNBR.subtract(post_meanNBR).select('NBR')
|
198 |
-
|
199 |
-
|
200 |
-
#GOES-16
|
201 |
-
preCMIcol = ee.ImageCollection("NOAA/GOES/16/MCMIPF").filter(ee.Filter.date(pre_start, pre_stop))\
|
202 |
-
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
203 |
-
preFDCcol = ee.ImageCollection("NOAA/GOES/16/FDCF").filter(ee.Filter.date(pre_start, pre_stop))\
|
204 |
-
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
205 |
-
|
206 |
-
prejoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
207 |
-
primary = preCMIcol,
|
208 |
-
secondary = preFDCcol,
|
209 |
-
condition = ee.Filter.maxDifference(
|
210 |
-
difference = 10, #milliseconds
|
211 |
-
leftField = 'system:time_start',
|
212 |
-
rightField = 'system:time_start',))
|
213 |
-
preMiddayGOEScol = ee.ImageCollection(prejoinedGOES.map(lambda object: MergeBands(object)))
|
214 |
-
preMiddayGOEScol = preMiddayGOEScol.map(GcalcCCsingle)
|
215 |
-
pre_meanNBR = preMiddayGOEScol.select(['NBR']).mean()
|
216 |
-
pre_meanNBR = pre_meanNBR.multiply(1.18).subtract(0.12)
|
217 |
-
|
218 |
-
|
219 |
-
postCMIcol = ee.ImageCollection("NOAA/GOES/16/MCMIPF").filter(ee.Filter.date(post_start, post_stop))\
|
220 |
-
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
221 |
-
postFDCcol = ee.ImageCollection("NOAA/GOES/16/FDCF").filter(ee.Filter.date(post_start, post_stop))\
|
222 |
-
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
223 |
-
|
224 |
-
postjoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
225 |
-
primary = postCMIcol,
|
226 |
-
secondary = postFDCcol,
|
227 |
-
condition = ee.Filter.maxDifference(
|
228 |
-
difference = 10, #milliseconds
|
229 |
-
leftField = 'system:time_start',
|
230 |
-
rightField = 'system:time_start',))
|
231 |
-
postMiddayGOEScol = ee.ImageCollection(postjoinedGOES.map(lambda object: MergeBands(object)))
|
232 |
-
postMiddayGOEScol = postMiddayGOEScol.map(GcalcCCsingle)
|
233 |
-
post_meanNBR = postMiddayGOEScol.select(['NBR']).mean()
|
234 |
-
post_meanNBR = post_meanNBR.multiply(1.18).subtract(0.12)
|
235 |
-
|
236 |
-
dNBR_goes16 = pre_meanNBR.subtract(post_meanNBR).select('NBR')
|
237 |
-
|
238 |
-
dNBRclip_goes17= dNBR_goes17.clip(bbox)
|
239 |
-
dNBRclip_goes16= dNBR_goes16.clip(bbox)
|
240 |
-
dNBRdisp_goes17 = dNBRclip_goes17.displace(displacement18, 'bicubic')
|
241 |
-
dNBRdisp_goes16 = dNBRclip_goes16.displace(displacement16, 'bicubic')
|
242 |
-
dNBRgoes_compos = ee.ImageCollection([dNBRdisp_goes17,dNBRdisp_goes16]).mean()
|
243 |
-
|
244 |
-
#ACTIVE fire
|
245 |
-
activeFire18 = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(pre_stop, post_stop))
|
246 |
-
activeFire16 = ee.ImageCollection(f"NOAA/GOES/16/FDCF").filter(ee.Filter.date(pre_stop, post_stop))
|
247 |
-
sumFRP18 = activeFire18.select('Power').sum().rename('sumFRP')
|
248 |
-
sumFRP16 = activeFire16.select('Power').sum().rename('sumFRP')
|
249 |
-
maskNoFire18 = sumFRP18.gt(200).displace(displacement18, 'bicubic')
|
250 |
-
maskNoFire16 = sumFRP16.gt(200).displace(displacement16, 'bicubic')
|
251 |
-
maskNoFire = ee.ImageCollection([maskNoFire18,maskNoFire16]).sum().gt(0)
|
252 |
-
|
253 |
-
'''
|
254 |
-
activeSNPP = ee.ImageCollection("NASA/LANCE/SNPP_VIIRS/C2").filter(ee.Filter.date(pre_stop, post_stop))
|
255 |
-
activeNOAA20 = ee.ImageCollection("NASA/LANCE/NOAA20_VIIRS/C2").filter(ee.Filter.date(pre_stop, post_stop))
|
256 |
-
sumFRP_SNPP = activeSNPP.select('confidence').max().rename('sumFRP')
|
257 |
-
sumFRP_NOAA20 = activeNOAA20.select('confidence').max().rename('sumFRP')
|
258 |
-
#maskNoFire = ee.ImageCollection([sumFRP_SNPP,sumFRP_NOAA20]).sum().gt(0)
|
259 |
-
maskNoFire = sumFRP_SNPP.gt(0)
|
260 |
-
'''
|
261 |
-
|
262 |
-
#VIIRS
|
263 |
-
preVIIRSimg = ee.ImageCollection("NASA/VIIRS/002/VNP09GA").filter(ee.Filter.date(pre_start, pre_stop)).mean()
|
264 |
-
postVIIRSimgCol = ee.ImageCollection("NASA/VIIRS/002/VNP09GA").filter(ee.Filter.date(post_start, post_stop)) #TO FIX ON JUNE 18 sfork_startDate.advance(24, 'day'), sfork_startDate.advance(25,'day')
|
265 |
-
|
266 |
-
#Landsat
|
267 |
-
prelandsat8col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox)
|
268 |
-
postlandsat8col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterDate(post_start, post_stop).filterBounds(bbox)
|
269 |
-
prelandsat9col = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox)
|
270 |
-
postlandsat9col = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2").filterDate(post_start, post_stop).filterBounds(bbox)
|
271 |
-
prelandsatcol = prelandsat8col.merge(prelandsat9col)
|
272 |
-
postlandsatcol = postlandsat8col.merge(postlandsat9col)
|
273 |
-
|
274 |
-
#Sentinel
|
275 |
-
presentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox)
|
276 |
-
postsentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(post_start, post_stop).filterBounds(bbox) #TO FIX on JULY 5: sfork_startDate.advance(32, 'day'), sfork_startDate.advance(33,'day')
|
277 |
-
#olderPostSentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(sfork_startDate.advance(37, 'day'), sfork_startDate.advance(38,'day')).filterBounds(bbox)
|
278 |
-
|
279 |
-
#SAR
|
280 |
-
#SARimg = ee.Image('projects/ovcrge-ssec-burn-scar-map-c116/assets/burned_20200907_20200919_test')
|
281 |
-
#SARmask = SARimg.eq(1)
|
282 |
-
|
283 |
-
if postVIIRSimgCol.size().getInfo() > 0:
|
284 |
-
postVIIRSimg = postVIIRSimgCol.mean()
|
285 |
-
preVIIRSimg = VcalcNBR(preVIIRSimg)
|
286 |
-
postVIIRSimg = VcalcNBR(postVIIRSimg)
|
287 |
-
dNBR_viirs = preVIIRSimg.subtract(postVIIRSimg).select('NBR')
|
288 |
-
dNBRclip_viirs = dNBR_viirs.clip(bbox)
|
289 |
-
else:
|
290 |
-
dNBR_composite = dNBRgoes_compos
|
291 |
-
if postsentCol.size().getInfo() > 0:
|
292 |
-
presentMean = presentCol.mean()
|
293 |
-
postsentMean = postsentCol.mean()
|
294 |
-
presentImg = ScalcNBR(presentMean)
|
295 |
-
postsentImg = ScalcNBR(postsentMean)
|
296 |
-
dnbr_sent = presentImg.subtract(postsentImg).multiply(1.3).add(0.05).select('NBR')
|
297 |
-
dNBRclip_sent = dnbr_sent.clip(bbox)
|
298 |
-
dNBR_composite = ee.ImageCollection([dNBRgoes_compos,dNBRclip_sent]).mosaic() #dNBRclip_viirs SHOULD GO IN IF UP TO DATE
|
299 |
-
elif postlandsatcol.size().getInfo() > 0:
|
300 |
-
prelandsat = prelandsatcol.mean()
|
301 |
-
prelandsatImg = LcalcNBR(prelandsat)
|
302 |
-
postlandsat = postlandsatcol.mean()
|
303 |
-
postlandsatImg = LcalcNBR(postlandsat)
|
304 |
-
dNBR_landsat = prelandsatImg.subtract(postlandsatImg).multiply(3.23).add(0.01).select('NBR')
|
305 |
-
dNBRclip_ls = dNBR_landsat.clip(bbox)
|
306 |
-
dNBR_composite = ee.ImageCollection([dNBRgoes_compos,dNBRclip_ls]).mosaic() #dNBRclip_viirs SHOULD GO IN IF UP TO DATE
|
307 |
-
else:
|
308 |
-
dNBR_composite = ee.ImageCollection([dNBRgoes_compos]).mosaic() #dNBRclip_viirs SHOULD GO IN IF UP TO DATE
|
309 |
-
|
310 |
-
masked_compos = dNBR_composite.updateMask(maskNoFire) #(SARmask)
|
311 |
-
#doubleMasked_compos = masked_compos.updateMask(maskNoFire)
|
312 |
-
doubleMasked_compos = masked_compos.mask(masked_compos.mask()).float()
|
313 |
-
downloadArgs = {'name': 'VIIRS_burnMap',
|
314 |
-
'crs': 'EPSG:4326',
|
315 |
-
'scale': 60,
|
316 |
-
'region': bbox}
|
317 |
-
url = doubleMasked_compos.getDownloadURL(downloadArgs)
|
318 |
-
|
319 |
-
print(url)
|
320 |
-
noDataVal = -9999
|
321 |
-
unmaskedImage = doubleMasked_compos.unmask(noDataVal, False)
|
322 |
-
|
323 |
-
task = ee.batch.Export.image.toDrive(**{
|
324 |
-
'image': unmaskedImage,
|
325 |
-
'description': "Composite_burnMap6",
|
326 |
-
'folder': "Earth Engine Outputs",
|
327 |
-
'fileNamePrefix': "Composite_burnMap_noData_VIIRS_June18_espg3857_60m",
|
328 |
-
'region': bbox,
|
329 |
-
'crs': 'EPSG:3857',
|
330 |
-
'scale': 60,})
|
331 |
-
task.start()
|
332 |
-
return masked_compos
|
333 |
-
|
334 |
-
|
335 |
-
self.clear_specific_layers()
|
336 |
-
|
337 |
-
fireImg = calc_nbr(startDate.advance(-7, 'day'), startDate, endDate.advance(-3, 'day'), endDate, boundingBox, 18)
|
338 |
-
self.addLayer(fireImg, dNBRvisParams, fireID, True)
|
339 |
-
self.centerObject(boundingBox, 10)
|
340 |
-
file = fireImg
|
341 |
-
|
342 |
-
|
343 |
-
def clear_specific_layers(self):
|
344 |
-
layers_to_keep = ['OpenStreetMap']
|
345 |
-
layers = list(self.layers)
|
346 |
-
for layer in layers:
|
347 |
-
if layer.name not in layers_to_keep:
|
348 |
-
self.remove_layer(layer)
|
349 |
-
|
350 |
-
|
351 |
-
def add_selector(self):
|
352 |
-
selector = widgets.Dropdown(options=fireList, value=fireList[6], description='Current wildfire :', style={'description_width': '125px'}, layout=widgets.Layout(width='400px'))
|
353 |
-
|
354 |
-
def on_selector_change(change):
|
355 |
-
if change['name'] == 'value':
|
356 |
-
selected_fire.value = change['new']
|
357 |
-
self.customize_ee_data(selected_fire.value, today)
|
358 |
-
|
359 |
-
selector.observe(on_selector_change, names='value')
|
360 |
-
self.add_widget(selector, position="topleft")
|
361 |
-
|
362 |
-
|
363 |
-
def add_dwnldButton(self):
|
364 |
-
button = widgets.Button(description='Export to Drive',icon='cloud-arrow-down')
|
365 |
-
|
366 |
-
#def on_button_click(change, file):
|
367 |
-
# if change['name'] == 'value':
|
368 |
-
# selected_days.value = change['new']
|
369 |
-
# self.download_ee_image(file, "trial_file.tif", scale=30)
|
370 |
-
def on_button_click(b):
|
371 |
-
# Get the currently selected fire and elapsed days
|
372 |
-
fire = selected_fire.value
|
373 |
-
elapDays = today
|
374 |
-
|
375 |
-
# Customize the EE data and download the image
|
376 |
-
file = self.customize_ee_data(fire, elapDays)
|
377 |
-
#self.download_ee_image(file, f"{fire}_NBR_{elapDays}days.tif", scale=30)
|
378 |
-
|
379 |
-
button.observe(on_button_click)
|
380 |
-
self.add_widget(button, position="topleft")
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
@solara.component
|
385 |
-
def Page():
|
386 |
-
|
387 |
-
with solara.Column(align="center"):
|
388 |
-
markdown = """
|
389 |
-
## Current 2024 wildfires over 10,000 acres"""
|
390 |
-
solara.Markdown(markdown)
|
391 |
-
|
392 |
-
# Isolation is required to prevent the map from overlapping navigation (when screen width < 960px)
|
393 |
-
with solara.Column(style={"isolation": "isolate"}):
|
394 |
-
map_widget = Map.element(
|
395 |
-
center=[39, -120.5],
|
396 |
-
zoom=8,
|
397 |
-
height="600px",
|
398 |
-
toolbar_ctrl=False
|
399 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
burn_mapper/pages/historical_fires.py
DELETED
@@ -1,429 +0,0 @@
|
|
1 |
-
import ee
|
2 |
-
import geemap
|
3 |
-
import solara
|
4 |
-
import ipywidgets as widgets
|
5 |
-
#from NBR_calculations import GcalcNBR, VcalcNBR, LcalcNBR, ScalcNBR, GcalcCCsingle
|
6 |
-
import requests
|
7 |
-
|
8 |
-
# Bit-masking
|
9 |
-
BitMask_0 = 1 << 0
|
10 |
-
BitMask_1 = 1 << 1
|
11 |
-
BitMask_2 = 1 << 2
|
12 |
-
BitMask_3 = 1 << 3
|
13 |
-
BitMask_4 = 1 << 4
|
14 |
-
BitMask_5 = 1 << 5
|
15 |
-
BitMask_6 = 1 << 6
|
16 |
-
BitMask_7 = 1 << 7
|
17 |
-
BitMask_8 = 1 << 8
|
18 |
-
BitMask_9 = 1 << 9
|
19 |
-
|
20 |
-
def GcalcCCsingle (goesImg):
|
21 |
-
|
22 |
-
fireDQF = goesImg.select('DQF').int()
|
23 |
-
CMI_QF3 = goesImg.select('DQF_C03').int()
|
24 |
-
CMI_QF6 = goesImg.select('DQF_C06').int()
|
25 |
-
|
26 |
-
#Right now, cloud mask is excluding clouds and water; active fire, bad data and fire free are unmasked. NBR mask exlcudes fire
|
27 |
-
F_Mask = fireDQF.eq(0)
|
28 |
-
C_Mask = (fireDQF.lt(2).Or(fireDQF.gt(2))).rename('C_Mask')
|
29 |
-
#.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('C_Mask')
|
30 |
-
QF_Mask = (fireDQF.eq(1).Or(fireDQF.gt(3)))\
|
31 |
-
.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('QFmask')
|
32 |
-
|
33 |
-
GOESmasked = goesImg.select(['CMI_C03','CMI_C06']).updateMask(QF_Mask)
|
34 |
-
NBRmasked = GOESmasked.normalizedDifference(['CMI_C03', 'CMI_C06']).toFloat().rename('NBR')
|
35 |
-
cloudMasked = goesImg.select('CMI_C03').updateMask(C_Mask).toFloat().rename('CC')
|
36 |
-
fireMasked = goesImg.select('CMI_C03').updateMask(F_Mask).toFloat().rename('FC')
|
37 |
-
|
38 |
-
return goesImg.addBands([NBRmasked,cloudMasked, fireMasked,QF_Mask,C_Mask])
|
39 |
-
|
40 |
-
'''Parameter Array Name Value Bit(s) = Value
|
41 |
-
Sun Glint QF1 Surface Reflectance None 6-7 = 00
|
42 |
-
Low Sun Mask QF1 Surface Reflectance High 5 = 0
|
43 |
-
Day/Night QF1 Surface Reflectance Day 4 =0
|
44 |
-
Cloud Detection QF1 Surface Reflectance Confident Clear 2-3 = 00 or Problably Clear 2-3 = 01
|
45 |
-
Cloud Mask Quality QF1 Surface Reflectance High or Medium 0-1 = 10 or 11
|
46 |
-
Snow/Ice QF2 Surface Reflectance No Snow or Ice 5 = 0
|
47 |
-
Cloud Shadow QF2 Surface Reflectance No Cloud Shadow 3 = 0
|
48 |
-
LandWater QF2 Surface Reflectance Land, Snow, Arctic, Antarctic or Greenland, Desert 0-2 = 011, 100, 101, 110, 111
|
49 |
-
Thin Cirrus Flag QF7 Surface Reflectance No Thin Cirrus 4 = 0
|
50 |
-
Aerosol Quantity QF7 Surface Reflectance Climatology, Low or Medium 2-3 = 00, 01 or 10
|
51 |
-
Adjacent to Cloud QF7 Surface Reflectance Not Adjacent to Cloud 1 = 0'''
|
52 |
-
|
53 |
-
def VcalcNBR (VIIRSimg):
|
54 |
-
|
55 |
-
QF1 = VIIRSimg.select('QF1').int()
|
56 |
-
QF2 = VIIRSimg.select('QF2').int()
|
57 |
-
QF7 = VIIRSimg.select('QF7').int()
|
58 |
-
|
59 |
-
QF_Mask = (QF1.bitwiseAnd(BitMask_3).eq(0)).And\
|
60 |
-
((QF2.bitwiseAnd(BitMask_2).eq(4)).Or((QF2.bitwiseAnd(BitMask_1).eq(0)))).And\
|
61 |
-
(QF2.bitwiseAnd(BitMask_5).eq(0)).rename('QFmask');
|
62 |
-
|
63 |
-
VIIRSm = VIIRSimg.select(['I2','M11']).updateMask(QF_Mask);
|
64 |
-
NBR = VIIRSm.normalizedDifference(['I2','M11']).toFloat().rename('NBR')
|
65 |
-
return VIIRSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR)
|
66 |
-
|
67 |
-
''' Bit 1: Dilated Cloud
|
68 |
-
Bit 2: Cirrus (high confidence)
|
69 |
-
Bit 3: Cloud
|
70 |
-
Bit 4: Cloud Shadow
|
71 |
-
Bit 5: Snow
|
72 |
-
Bit 6: Clear (0: Cloud or Dilated Cloud bits are set, 1: Cloud and Dilated Cloud bits are not set)
|
73 |
-
Bit 7: Water
|
74 |
-
Bits 8-9: Cloud Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
75 |
-
Bits 10-11: Cloud Shadow Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
76 |
-
Bits 12-13: Snow/Ice Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
77 |
-
Bits 14-15: Cirrus Confidence (0: None, 1: Low, 2: Medium, 3: High)'''
|
78 |
-
|
79 |
-
def LcalcNBR (LSimg):
|
80 |
-
QApixel = LSimg.select('QA_PIXEL').int()
|
81 |
-
QF_Mask =(QApixel.bitwiseAnd(BitMask_3).eq(0)).And\
|
82 |
-
(QApixel.bitwiseAnd(BitMask_5).eq(0)).And\
|
83 |
-
(QApixel.bitwiseAnd(BitMask_7).eq(0)).rename('QFmask');
|
84 |
-
|
85 |
-
LSmasked = LSimg.select(['SR_B5','SR_B7']).updateMask(QF_Mask);
|
86 |
-
NBR = LSmasked.normalizedDifference(['SR_B5','SR_B7']).toFloat().rename('NBR')
|
87 |
-
return LSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR)
|
88 |
-
|
89 |
-
''' 1 Saturated or defective
|
90 |
-
2 Dark Area Pixels
|
91 |
-
3 Cloud Shadows
|
92 |
-
4 Vegetation
|
93 |
-
5 Bare Soils
|
94 |
-
6 Water
|
95 |
-
7 Clouds Low Probability / Unclassified
|
96 |
-
8 Clouds Medium Probability
|
97 |
-
9 Clouds High Probability
|
98 |
-
10 Cirrus
|
99 |
-
11 Snow / Ice'''
|
100 |
-
|
101 |
-
def ScalcNBR (sentImg):
|
102 |
-
SCL = sentImg.select('SCL');
|
103 |
-
QF_Mask =(SCL.neq(6)).And\
|
104 |
-
(SCL.neq(8)).And\
|
105 |
-
(SCL.neq(9)).And\
|
106 |
-
(SCL.neq(11))\
|
107 |
-
.rename('QFmask');
|
108 |
-
sentMasked = sentImg.select(['B8A','B12']).updateMask(QF_Mask); #B8 is another option- broadband NIR
|
109 |
-
NBR = sentMasked.normalizedDifference(['B8A','B12']).toFloat().rename('NBR')
|
110 |
-
return sentImg.addBands(NBR).addBands(QF_Mask).addBands(SCL)#.set('avgNBR', avgNBR)
|
111 |
-
|
112 |
-
|
113 |
-
fireList = ["North Complex", "Dixie", "Cameron Peak", "August Complex", "South Fork"]
|
114 |
-
selected_fire = solara.reactive(fireList[4])
|
115 |
-
selected_days = solara.reactive(25) #30
|
116 |
-
dNBRvisParams = {'min': 0.0,'max': 0.8, 'palette': ['green', 'yellow','orange','red']}
|
117 |
-
|
118 |
-
|
119 |
-
class Map(geemap.Map):
|
120 |
-
def __init__(self, **kwargs):
|
121 |
-
super().__init__(**kwargs)
|
122 |
-
self.add_basemap('OpenStreetMap')
|
123 |
-
self.customize_ee_data(selected_fire.value, selected_days.value)
|
124 |
-
self.add_selector()
|
125 |
-
self.add_intSlider()
|
126 |
-
self.add_dwnldButton()
|
127 |
-
self.add("layer_manager")
|
128 |
-
self.remove("draw_control")
|
129 |
-
|
130 |
-
|
131 |
-
def customize_ee_data(self, fire, elapDays):
|
132 |
-
elapDayNum = ee.Number(elapDays)
|
133 |
-
elapDay_plusOne = elapDayNum.add(ee.Number(1))
|
134 |
-
|
135 |
-
north_startDate = ee.Date('2020-08-16')
|
136 |
-
dixie_startDate = ee.Date('2021-07-13')
|
137 |
-
cam_startDate = ee.Date('2020-08-13')
|
138 |
-
aug_startDate = ee.Date('2020-08-15')
|
139 |
-
sfork_startDate = ee.Date('2024-05-25')
|
140 |
-
|
141 |
-
north_complex_bb = ee.Geometry.BBox(-121.616097, 39.426723, -120.668526, 40.030845)
|
142 |
-
dixie_bb = ee.Geometry.BBox(-121.680467, 39.759303, -120.065477, 40.873387)
|
143 |
-
cam_peak_bb = ee.Geometry.BBox(-106.014784, 40.377907, -105.116651, 40.822094)
|
144 |
-
aug_complex_bb = ee.Geometry.BBox(-123.668726, 39.337654, -122.355860, 40.498304)
|
145 |
-
sfork_bb = ee.Geometry.BBox(-106.192, 33.1, -105.065, 33.782)
|
146 |
-
|
147 |
-
def calc_nbr(pre_start, pre_stop, post_start, post_stop, bbox, goes):
|
148 |
-
def MergeBands (eachImage):
|
149 |
-
oneImage = ee.Image.cat(eachImage.get('CMI'), eachImage.get('FDC'))
|
150 |
-
return oneImage
|
151 |
-
displacementImg18 = ee.Image.load('projects/ee-losos/assets/G18-F-meter-offset_GEE')
|
152 |
-
y_dif = displacementImg18.select([1])
|
153 |
-
x_dif = displacementImg18.select([0]).multiply(-1)
|
154 |
-
displacement18 = ee.Image([x_dif, y_dif])
|
155 |
-
|
156 |
-
displacementImg16 = ee.Image.load('projects/ee-losos/assets/G16-F-meter-offset_GEE')
|
157 |
-
y_dif = displacementImg16.select([1])
|
158 |
-
x_dif = displacementImg16.select([0]).multiply(-1)
|
159 |
-
displacement16 = ee.Image([x_dif, y_dif]);
|
160 |
-
|
161 |
-
preCMIcol = ee.ImageCollection(f"NOAA/GOES/{goes}/MCMIPF").filter(ee.Filter.date(pre_start, pre_stop))\
|
162 |
-
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
163 |
-
preFDCcol = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(pre_start, pre_stop))\
|
164 |
-
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
165 |
-
postCMIcol = ee.ImageCollection(f"NOAA/GOES/{goes}/MCMIPF").filter(ee.Filter.date(post_start, post_stop))\
|
166 |
-
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
167 |
-
postFDCcol = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(post_start, post_stop))\
|
168 |
-
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
169 |
-
|
170 |
-
prejoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
171 |
-
primary = preCMIcol,
|
172 |
-
secondary = preFDCcol,
|
173 |
-
condition = ee.Filter.maxDifference(
|
174 |
-
difference = 10, #milliseconds
|
175 |
-
leftField = 'system:time_start',
|
176 |
-
rightField = 'system:time_start',))
|
177 |
-
preMiddayGOEScol = ee.ImageCollection(prejoinedGOES.map(lambda object: MergeBands(object)))
|
178 |
-
preMiddayGOEScol = preMiddayGOEScol.map(GcalcCCsingle)
|
179 |
-
pre_meanNBR = preMiddayGOEScol.select(['NBR']).mean()
|
180 |
-
pre_meanNBR = pre_meanNBR.multiply(1.18).subtract(0.12)
|
181 |
-
|
182 |
-
postjoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
183 |
-
primary = postCMIcol,
|
184 |
-
secondary = postFDCcol,
|
185 |
-
condition = ee.Filter.maxDifference(
|
186 |
-
difference = 10, #milliseconds
|
187 |
-
leftField = 'system:time_start',
|
188 |
-
rightField = 'system:time_start',))
|
189 |
-
postMiddayGOEScol = ee.ImageCollection(postjoinedGOES.map(lambda object: MergeBands(object)))
|
190 |
-
postMiddayGOEScol = postMiddayGOEScol.map(GcalcCCsingle)
|
191 |
-
post_meanNBR = postMiddayGOEScol.select(['NBR']).mean()
|
192 |
-
post_meanNBR = post_meanNBR.multiply(1.18).subtract(0.12)
|
193 |
-
|
194 |
-
dNBR_goes17 = pre_meanNBR.subtract(post_meanNBR).select('NBR')
|
195 |
-
|
196 |
-
|
197 |
-
#GOES-16
|
198 |
-
preCMIcol = ee.ImageCollection("NOAA/GOES/16/MCMIPF").filter(ee.Filter.date(pre_start, pre_stop))\
|
199 |
-
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
200 |
-
preFDCcol = ee.ImageCollection("NOAA/GOES/16/FDCF").filter(ee.Filter.date(pre_start, pre_stop))\
|
201 |
-
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
202 |
-
|
203 |
-
prejoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
204 |
-
primary = preCMIcol,
|
205 |
-
secondary = preFDCcol,
|
206 |
-
condition = ee.Filter.maxDifference(
|
207 |
-
difference = 10, #milliseconds
|
208 |
-
leftField = 'system:time_start',
|
209 |
-
rightField = 'system:time_start',))
|
210 |
-
preMiddayGOEScol = ee.ImageCollection(prejoinedGOES.map(lambda object: MergeBands(object)))
|
211 |
-
preMiddayGOEScol = preMiddayGOEScol.map(GcalcCCsingle)
|
212 |
-
pre_meanNBR = preMiddayGOEScol.select(['NBR']).mean()
|
213 |
-
pre_meanNBR = pre_meanNBR.multiply(1.18).subtract(0.12)
|
214 |
-
|
215 |
-
|
216 |
-
postCMIcol = ee.ImageCollection("NOAA/GOES/16/MCMIPF").filter(ee.Filter.date(post_start, post_stop))\
|
217 |
-
.filter(ee.Filter.calendarRange(17, 21, 'hour'))#10-2pm PCT, 11am-3pm MST
|
218 |
-
postFDCcol = ee.ImageCollection("NOAA/GOES/16/FDCF").filter(ee.Filter.date(post_start, post_stop))\
|
219 |
-
.filter(ee.Filter.calendarRange(17, 21, 'hour')) #10-2pm PCT, 11am-3pm MST
|
220 |
-
|
221 |
-
postjoinedGOES = ee.Join.inner('CMI','FDC').apply(
|
222 |
-
primary = postCMIcol,
|
223 |
-
secondary = postFDCcol,
|
224 |
-
condition = ee.Filter.maxDifference(
|
225 |
-
difference = 10, #milliseconds
|
226 |
-
leftField = 'system:time_start',
|
227 |
-
rightField = 'system:time_start',))
|
228 |
-
postMiddayGOEScol = ee.ImageCollection(postjoinedGOES.map(lambda object: MergeBands(object)))
|
229 |
-
postMiddayGOEScol = postMiddayGOEScol.map(GcalcCCsingle)
|
230 |
-
post_meanNBR = postMiddayGOEScol.select(['NBR']).mean()
|
231 |
-
post_meanNBR = post_meanNBR.multiply(1.18).subtract(0.12)
|
232 |
-
|
233 |
-
dNBR_goes16 = pre_meanNBR.subtract(post_meanNBR).select('NBR')
|
234 |
-
|
235 |
-
dNBRclip_goes17= dNBR_goes17.clip(bbox)
|
236 |
-
dNBRclip_goes16= dNBR_goes16.clip(bbox)
|
237 |
-
dNBRdisp_goes17 = dNBRclip_goes17.displace(displacement18, 'bicubic')
|
238 |
-
dNBRdisp_goes16 = dNBRclip_goes16.displace(displacement16, 'bicubic')
|
239 |
-
dNBRgoes_compos = ee.ImageCollection([dNBRdisp_goes17,dNBRdisp_goes16]).mean()
|
240 |
-
|
241 |
-
#ACTIVE fire
|
242 |
-
activeFire18 = ee.ImageCollection(f"NOAA/GOES/{goes}/FDCF").filter(ee.Filter.date(pre_stop, post_stop))
|
243 |
-
activeFire16 = ee.ImageCollection(f"NOAA/GOES/16/FDCF").filter(ee.Filter.date(pre_stop, post_stop))
|
244 |
-
sumFRP18 = activeFire18.select('Power').sum().rename('sumFRP')
|
245 |
-
sumFRP16 = activeFire16.select('Power').sum().rename('sumFRP')
|
246 |
-
maskNoFire18 = sumFRP18.gt(200).displace(displacement18, 'bicubic')
|
247 |
-
maskNoFire16 = sumFRP16.gt(200).displace(displacement16, 'bicubic')
|
248 |
-
maskNoFire = ee.ImageCollection([maskNoFire18,maskNoFire16]).sum().gt(0)
|
249 |
-
|
250 |
-
'''
|
251 |
-
activeSNPP = ee.ImageCollection("NASA/LANCE/SNPP_VIIRS/C2").filter(ee.Filter.date(pre_stop, post_stop))
|
252 |
-
activeNOAA20 = ee.ImageCollection("NASA/LANCE/NOAA20_VIIRS/C2").filter(ee.Filter.date(pre_stop, post_stop))
|
253 |
-
sumFRP_SNPP = activeSNPP.select('confidence').max().rename('sumFRP')
|
254 |
-
sumFRP_NOAA20 = activeNOAA20.select('confidence').max().rename('sumFRP')
|
255 |
-
#maskNoFire = ee.ImageCollection([sumFRP_SNPP,sumFRP_NOAA20]).sum().gt(0)
|
256 |
-
maskNoFire = sumFRP_SNPP.gt(0)
|
257 |
-
'''
|
258 |
-
|
259 |
-
#VIIRS
|
260 |
-
preVIIRSimg = ee.ImageCollection("NASA/VIIRS/002/VNP09GA").filter(ee.Filter.date(pre_start, pre_stop)).mean()
|
261 |
-
#postVIIRSimgCol = ee.ImageCollection("NASA/VIIRS/002/VNP09GA").filter(ee.Filter.date(post_start, post_stop))
|
262 |
-
postVIIRSimgCol = ee.ImageCollection("NASA/VIIRS/002/VNP09GA").filter(ee.Filter.date(post_start, post_stop)) #TO FIX ON JUNE 18 sfork_startDate.advance(24, 'day'), sfork_startDate.advance(25,'day')
|
263 |
-
|
264 |
-
#Landsat
|
265 |
-
prelandsat8col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox)
|
266 |
-
postlandsat8col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterDate(post_start, post_stop).filterBounds(bbox)
|
267 |
-
prelandsat9col = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox)
|
268 |
-
postlandsat9col = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2").filterDate(post_start, post_stop).filterBounds(bbox)
|
269 |
-
prelandsatcol = prelandsat8col.merge(prelandsat9col)
|
270 |
-
postlandsatcol = postlandsat8col.merge(postlandsat9col)
|
271 |
-
|
272 |
-
#Sentinel
|
273 |
-
presentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(pre_start.advance(-10, 'day'), pre_stop).filterBounds(bbox)
|
274 |
-
postsentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(post_start, post_stop).filterBounds(bbox) #TO FIX on JULY 5: sfork_startDate.advance(32, 'day'), sfork_startDate.advance(33,'day')
|
275 |
-
olderPostSentCol = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterDate(sfork_startDate.advance(37, 'day'), sfork_startDate.advance(38,'day')).filterBounds(bbox)
|
276 |
-
#SAR
|
277 |
-
#SARimg = ee.Image('projects/ovcrge-ssec-burn-scar-map-c116/assets/burned_20200907_20200919_test')
|
278 |
-
#SARmask = SARimg.eq(1)
|
279 |
-
if postVIIRSimgCol.size().getInfo() > 0:
|
280 |
-
postVIIRSimg = postVIIRSimgCol.mean()
|
281 |
-
preVIIRSimg = VcalcNBR(preVIIRSimg)
|
282 |
-
postVIIRSimg = VcalcNBR(postVIIRSimg)
|
283 |
-
dNBR_viirs = preVIIRSimg.subtract(postVIIRSimg).select('NBR')
|
284 |
-
dNBRclip_viirs = dNBR_viirs.clip(bbox)
|
285 |
-
else:
|
286 |
-
dNBR_composite = dNBRgoes_compos
|
287 |
-
if postsentCol.size().getInfo() > 0:
|
288 |
-
presentMean = presentCol.mean()
|
289 |
-
postsentMean = postsentCol.mean()
|
290 |
-
postsent2Mean = olderPostSentCol.mean()
|
291 |
-
presentImg = ScalcNBR(presentMean)
|
292 |
-
postsentImg = ScalcNBR(postsentMean)
|
293 |
-
postsentImg2 = ScalcNBR(postsent2Mean)
|
294 |
-
postSentCombo = ee.ImageCollection([postsentImg,postsentImg2]).mosaic()
|
295 |
-
dnbr_sent = presentImg.subtract(postSentCombo).multiply(1.3).add(0.05).select('NBR')
|
296 |
-
dNBRclip_sent = dnbr_sent.clip(bbox)
|
297 |
-
dNBR_composite = ee.ImageCollection([dNBRgoes_compos,dNBRclip_viirs,dNBRclip_sent]).mosaic()
|
298 |
-
elif postlandsatcol.size().getInfo() > 0:
|
299 |
-
print(postlandsatcol.size().getInfo())
|
300 |
-
prelandsat = prelandsatcol.mean()
|
301 |
-
prelandsatImg = LcalcNBR(prelandsat)
|
302 |
-
postlandsat = postlandsatcol.mean()
|
303 |
-
postlandsatImg = LcalcNBR(postlandsat)
|
304 |
-
dNBR_landsat = prelandsatImg.subtract(postlandsatImg).multiply(3.23).add(0.01).select('NBR')
|
305 |
-
dNBRclip_ls = dNBR_landsat.clip(bbox)
|
306 |
-
dNBR_composite = ee.ImageCollection([dNBRgoes_compos,dNBRclip_viirs,dNBRclip_ls]).mosaic()
|
307 |
-
else:
|
308 |
-
dNBR_composite = ee.ImageCollection([dNBRgoes_compos,dNBRclip_viirs]).mosaic()
|
309 |
-
|
310 |
-
masked_compos = dNBR_composite.updateMask(maskNoFire) #(SARmask)
|
311 |
-
#doubleMasked_compos = masked_compos.updateMask(maskNoFire)
|
312 |
-
doubleMasked_compos = masked_compos.mask(masked_compos.mask()).float()
|
313 |
-
downloadArgs = {'name': 'VIIRS_burnMap',
|
314 |
-
'crs': 'EPSG:4326',
|
315 |
-
'scale': 60,
|
316 |
-
'region': bbox}
|
317 |
-
url = doubleMasked_compos.getDownloadURL(downloadArgs)
|
318 |
-
|
319 |
-
print(url)
|
320 |
-
noDataVal = -9999
|
321 |
-
unmaskedImage = doubleMasked_compos.unmask(noDataVal, False)
|
322 |
-
|
323 |
-
task = ee.batch.Export.image.toDrive(**{
|
324 |
-
'image': unmaskedImage,
|
325 |
-
'description': "Composite_burnMap6",
|
326 |
-
'folder': "Earth Engine Outputs",
|
327 |
-
'fileNamePrefix': "Composite_burnMap_noData_VIIRS_June18_espg3857_60m",
|
328 |
-
'region': bbox,
|
329 |
-
'crs': 'EPSG:3857',
|
330 |
-
'scale': 60,})
|
331 |
-
#task.start()
|
332 |
-
return masked_compos
|
333 |
-
|
334 |
-
|
335 |
-
self.clear_specific_layers()
|
336 |
-
|
337 |
-
if fire == "North Complex":
|
338 |
-
north_complex = calc_nbr(north_startDate.advance(-7, 'day'), north_startDate, north_startDate.advance(elapDayNum, 'day'), north_startDate.advance(elapDay_plusOne,'day'), north_complex_bb, 17)
|
339 |
-
self.addLayer(north_complex, dNBRvisParams, 'North Complex GOES NBR', True)
|
340 |
-
self.centerObject(north_complex_bb, 9)
|
341 |
-
file = north_complex
|
342 |
-
elif fire == "Dixie":
|
343 |
-
dixie = calc_nbr(dixie_startDate.advance(-7, 'day'), dixie_startDate, dixie_startDate.advance(elapDayNum, 'day'), dixie_startDate.advance(elapDay_plusOne,'day'), dixie_bb, 17)
|
344 |
-
self.addLayer(dixie, dNBRvisParams, 'Dixie Complex GOES NBR', True)
|
345 |
-
self.centerObject(dixie_bb, 9)
|
346 |
-
file = dixie
|
347 |
-
elif fire == "Cameron Peak":
|
348 |
-
cam_peak = calc_nbr(cam_startDate.advance(-7, 'day'), cam_startDate, cam_startDate.advance(elapDayNum, 'day'), cam_startDate.advance(elapDay_plusOne,'day'), cam_peak_bb, 17)
|
349 |
-
self.addLayer(cam_peak, dNBRvisParams, 'Cameron Peak GOES NBR', True)
|
350 |
-
self.centerObject(cam_peak_bb, 9)
|
351 |
-
file = cam_peak
|
352 |
-
elif fire == "August Complex":
|
353 |
-
aug_complex = calc_nbr(aug_startDate.advance(-7, 'day'), aug_startDate, aug_startDate.advance(elapDayNum, 'day'), aug_startDate.advance(elapDay_plusOne,'day'), aug_complex_bb, 17)
|
354 |
-
self.addLayer(aug_complex, dNBRvisParams, 'August Complex GOES NBR', True)
|
355 |
-
self.centerObject(aug_complex_bb, 9)
|
356 |
-
file = aug_complex
|
357 |
-
elif fire == "South Fork":
|
358 |
-
sfork = calc_nbr(sfork_startDate.advance(-7, 'day'), sfork_startDate, sfork_startDate.advance(elapDayNum, 'day'), sfork_startDate.advance(elapDay_plusOne,'day'), sfork_bb, 18)
|
359 |
-
self.addLayer(sfork, dNBRvisParams, 'South Fork GOES NBR', True)
|
360 |
-
self.centerObject(sfork_bb, 9)
|
361 |
-
file = sfork
|
362 |
-
|
363 |
-
def clear_specific_layers(self):
|
364 |
-
layers_to_keep = ['OpenStreetMap']
|
365 |
-
layers = list(self.layers)
|
366 |
-
for layer in layers:
|
367 |
-
if layer.name not in layers_to_keep:
|
368 |
-
self.remove_layer(layer)
|
369 |
-
|
370 |
-
|
371 |
-
def add_selector(self):
|
372 |
-
selector = widgets.Dropdown(options=fireList, value="South Fork", description='Wildfire Case Study:', style={'description_width': '125px'}, layout=widgets.Layout(width='400px'))
|
373 |
-
|
374 |
-
def on_selector_change(change):
|
375 |
-
if change['name'] == 'value':
|
376 |
-
selected_fire.value = change['new']
|
377 |
-
self.customize_ee_data(selected_fire.value, selected_days.value)
|
378 |
-
|
379 |
-
selector.observe(on_selector_change, names='value')
|
380 |
-
self.add_widget(selector, position="topleft")
|
381 |
-
|
382 |
-
def add_intSlider(self):
|
383 |
-
slider = widgets.IntSlider(value=selected_days.value,min=1,max=40,step=1,description='Elapsed days:',style={'description_width': '125px'}, layout=widgets.Layout(width='400px'))
|
384 |
-
|
385 |
-
def on_slider_change(change):
|
386 |
-
if change['name'] == 'value':
|
387 |
-
selected_days.value = change['new']
|
388 |
-
self.customize_ee_data(selected_fire.value, selected_days.value)
|
389 |
-
|
390 |
-
slider.observe(on_slider_change, names='value')
|
391 |
-
self.add_widget(slider, position="topleft")
|
392 |
-
|
393 |
-
def add_dwnldButton(self):
|
394 |
-
button = widgets.Button(description='Download',icon='cloud-arrow-down')
|
395 |
-
|
396 |
-
#def on_button_click(change, file):
|
397 |
-
# if change['name'] == 'value':
|
398 |
-
# selected_days.value = change['new']
|
399 |
-
# self.download_ee_image(file, "trial_file.tif", scale=30)
|
400 |
-
def on_button_click(b):
|
401 |
-
# Get the currently selected fire and elapsed days
|
402 |
-
fire = selected_fire.value
|
403 |
-
elapDays = selected_days.value
|
404 |
-
|
405 |
-
# Customize the EE data and download the image
|
406 |
-
file = self.customize_ee_data(fire, elapDays)
|
407 |
-
#self.download_ee_image(file, f"{fire}_NBR_{elapDays}days.tif", scale=30)
|
408 |
-
|
409 |
-
button.observe(on_button_click)
|
410 |
-
self.add_widget(button, position="topleft")
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
@solara.component
|
415 |
-
def Page():
|
416 |
-
|
417 |
-
with solara.Column(align="center"):
|
418 |
-
markdown = """
|
419 |
-
## Historical Western US wildfires from 2020-2021 """
|
420 |
-
solara.Markdown(markdown)
|
421 |
-
|
422 |
-
# Isolation is required to prevent the map from overlapping navigation (when screen width < 960px)
|
423 |
-
with solara.Column(style={"isolation": "isolate"}):
|
424 |
-
map_widget = Map.element(
|
425 |
-
center=[39, -120.5],
|
426 |
-
zoom=8,
|
427 |
-
height="600px",
|
428 |
-
toolbar_ctrl=False
|
429 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
burn_mapper/requirements.txt
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
geemap
|
2 |
-
solara== 1.33.0
|
3 |
-
geopandas
|
4 |
-
pydantic< 2.0
|
5 |
-
ipyevents
|
6 |
-
ipywidgets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
burn_mapper/utils/NBR_calculations.py
DELETED
@@ -1,130 +0,0 @@
|
|
1 |
-
import ee
|
2 |
-
|
3 |
-
''' 0 Good quality fire
|
4 |
-
1 Good quality fire-free land
|
5 |
-
2 Invalid due to opaque cloud
|
6 |
-
3 Invalid due to surface type or sunglint or LZA threshold exceeded or off earth or missing input data
|
7 |
-
4 Invalid due to bad input data
|
8 |
-
5 Invalid due to algorithm failure'''
|
9 |
-
# Bit-masking
|
10 |
-
BitMask_0 = 1 << 0
|
11 |
-
BitMask_1 = 1 << 1
|
12 |
-
BitMask_2 = 1 << 2
|
13 |
-
BitMask_3 = 1 << 3
|
14 |
-
BitMask_4 = 1 << 4
|
15 |
-
BitMask_5 = 1 << 5
|
16 |
-
BitMask_6 = 1 << 6
|
17 |
-
BitMask_7 = 1 << 7
|
18 |
-
BitMask_8 = 1 << 8
|
19 |
-
BitMask_9 = 1 << 9
|
20 |
-
|
21 |
-
def GcalcNBR (goesImg, aoi):
|
22 |
-
#day = ee.Date(eachImg.get('system:time_start')).get('day','America/Los_Angeles')
|
23 |
-
fireMode = goesImg.select('fireMode')
|
24 |
-
fireMin = goesImg.select('fireMin')
|
25 |
-
|
26 |
-
CMI_QF3 = goesImg.select('DQF_C03').int()
|
27 |
-
CMI_QF6 = goesImg.select('DQF_C06').int()
|
28 |
-
|
29 |
-
# To include active fire pixels - fireMin.lt(2)\ for next line
|
30 |
-
QF_Mask = (fireMin.eq(1)\
|
31 |
-
.Or(fireMin.gt(3)))\
|
32 |
-
.And(CMI_QF3.lt(2))\
|
33 |
-
.And(CMI_QF6.lt(2))\
|
34 |
-
.rename('QFmask');
|
35 |
-
GOESm = goesImg.select(['CMI_C03','CMI_C06']).updateMask(QF_Mask)
|
36 |
-
NBR = GOESm.normalizedDifference(['CMI_C03', 'CMI_C06']).toFloat().rename('NBR')
|
37 |
-
|
38 |
-
return goesImg.addBands([NBR,QF_Mask])
|
39 |
-
|
40 |
-
def GcalcCCsingle (goesImg):
|
41 |
-
|
42 |
-
fireDQF = goesImg.select('DQF').int()
|
43 |
-
CMI_QF3 = goesImg.select('DQF_C03').int()
|
44 |
-
CMI_QF6 = goesImg.select('DQF_C06').int()
|
45 |
-
|
46 |
-
#Right now, cloud mask is excluding clouds and water; active fire, bad data and fire free are unmasked. NBR mask exlcudes fire
|
47 |
-
F_Mask = fireDQF.eq(0)
|
48 |
-
C_Mask = (fireDQF.lt(2).Or(fireDQF.gt(2))).rename('C_Mask')
|
49 |
-
#.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('C_Mask')
|
50 |
-
QF_Mask = (fireDQF.eq(1).Or(fireDQF.gt(3)))\
|
51 |
-
.And(CMI_QF3.lt(2)).And(CMI_QF6.lt(2)).rename('QFmask')
|
52 |
-
|
53 |
-
GOESmasked = goesImg.select(['CMI_C03','CMI_C06']).updateMask(QF_Mask)
|
54 |
-
NBRmasked = GOESmasked.normalizedDifference(['CMI_C03', 'CMI_C06']).toFloat().rename('NBR')
|
55 |
-
cloudMasked = goesImg.select('CMI_C03').updateMask(C_Mask).toFloat().rename('CC')
|
56 |
-
fireMasked = goesImg.select('CMI_C03').updateMask(F_Mask).toFloat().rename('FC')
|
57 |
-
|
58 |
-
return goesImg.addBands([NBRmasked,cloudMasked, fireMasked,QF_Mask,C_Mask])
|
59 |
-
|
60 |
-
'''Parameter Array Name Value Bit(s) = Value
|
61 |
-
Sun Glint QF1 Surface Reflectance None 6-7 = 00
|
62 |
-
Low Sun Mask QF1 Surface Reflectance High 5 = 0
|
63 |
-
Day/Night QF1 Surface Reflectance Day 4 =0
|
64 |
-
Cloud Detection QF1 Surface Reflectance Confident Clear 2-3 = 00 or Problably Clear 2-3 = 01
|
65 |
-
Cloud Mask Quality QF1 Surface Reflectance High or Medium 0-1 = 10 or 11
|
66 |
-
Snow/Ice QF2 Surface Reflectance No Snow or Ice 5 = 0
|
67 |
-
Cloud Shadow QF2 Surface Reflectance No Cloud Shadow 3 = 0
|
68 |
-
LandWater QF2 Surface Reflectance Land, Snow, Arctic, Antarctic or Greenland, Desert 0-2 = 011, 100, 101, 110, 111
|
69 |
-
Thin Cirrus Flag QF7 Surface Reflectance No Thin Cirrus 4 = 0
|
70 |
-
Aerosol Quantity QF7 Surface Reflectance Climatology, Low or Medium 2-3 = 00, 01 or 10
|
71 |
-
Adjacent to Cloud QF7 Surface Reflectance Not Adjacent to Cloud 1 = 0'''
|
72 |
-
|
73 |
-
def VcalcNBR (VIIRSimg):
|
74 |
-
|
75 |
-
QF1 = VIIRSimg.select('QF1').int()
|
76 |
-
QF2 = VIIRSimg.select('QF2').int()
|
77 |
-
QF7 = VIIRSimg.select('QF7').int()
|
78 |
-
|
79 |
-
QF_Mask = (QF1.bitwiseAnd(BitMask_3).eq(0)).And\
|
80 |
-
((QF2.bitwiseAnd(BitMask_2).eq(4)).Or((QF2.bitwiseAnd(BitMask_1).eq(0)))).And\
|
81 |
-
(QF2.bitwiseAnd(BitMask_5).eq(0)).rename('QFmask');
|
82 |
-
|
83 |
-
VIIRSm = VIIRSimg.select(['I2','M11']).updateMask(QF_Mask);
|
84 |
-
NBR = VIIRSm.normalizedDifference(['I2','M11']).toFloat().rename('NBR')
|
85 |
-
return VIIRSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR)
|
86 |
-
|
87 |
-
''' Bit 1: Dilated Cloud
|
88 |
-
Bit 2: Cirrus (high confidence)
|
89 |
-
Bit 3: Cloud
|
90 |
-
Bit 4: Cloud Shadow
|
91 |
-
Bit 5: Snow
|
92 |
-
Bit 6: Clear (0: Cloud or Dilated Cloud bits are set, 1: Cloud and Dilated Cloud bits are not set)
|
93 |
-
Bit 7: Water
|
94 |
-
Bits 8-9: Cloud Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
95 |
-
Bits 10-11: Cloud Shadow Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
96 |
-
Bits 12-13: Snow/Ice Confidence (0: None, 1: Low, 2: Medium, 3: High)
|
97 |
-
Bits 14-15: Cirrus Confidence (0: None, 1: Low, 2: Medium, 3: High)'''
|
98 |
-
|
99 |
-
def LcalcNBR (LSimg):
|
100 |
-
QApixel = LSimg.select('QA_PIXEL').int()
|
101 |
-
QF_Mask =(QApixel.bitwiseAnd(BitMask_3).eq(0)).And\
|
102 |
-
(QApixel.bitwiseAnd(BitMask_5).eq(0)).And\
|
103 |
-
(QApixel.bitwiseAnd(BitMask_7).eq(0)).rename('QFmask');
|
104 |
-
|
105 |
-
LSmasked = LSimg.select(['SR_B5','SR_B7']).updateMask(QF_Mask);
|
106 |
-
NBR = LSmasked.normalizedDifference(['SR_B5','SR_B7']).toFloat().rename('NBR')
|
107 |
-
return LSimg.addBands(NBR).addBands(QF_Mask)#.set('avgNBR', avgNBR)
|
108 |
-
|
109 |
-
''' 1 Saturated or defective
|
110 |
-
2 Dark Area Pixels
|
111 |
-
3 Cloud Shadows
|
112 |
-
4 Vegetation
|
113 |
-
5 Bare Soils
|
114 |
-
6 Water
|
115 |
-
7 Clouds Low Probability / Unclassified
|
116 |
-
8 Clouds Medium Probability
|
117 |
-
9 Clouds High Probability
|
118 |
-
10 Cirrus
|
119 |
-
11 Snow / Ice'''
|
120 |
-
|
121 |
-
def ScalcNBR (sentImg):
|
122 |
-
SCL = sentImg.select('SCL');
|
123 |
-
QF_Mask =(SCL.neq(6)).And\
|
124 |
-
(SCL.neq(8)).And\
|
125 |
-
(SCL.neq(9)).And\
|
126 |
-
(SCL.neq(11))\
|
127 |
-
.rename('QFmask');
|
128 |
-
sentMasked = sentImg.select(['B8A','B12']).updateMask(QF_Mask); #B8 is another option- broadband NIR
|
129 |
-
NBR = sentMasked.normalizedDifference(['B8A','B12']).toFloat().rename('NBR')
|
130 |
-
return sentImg.addBands(NBR).addBands(QF_Mask).addBands(SCL)#.set('avgNBR', avgNBR)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
burn_mapper/utils/__init__.py
DELETED
File without changes
|