File size: 23,192 Bytes
e5d1ec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "_8ZwOksxZ0-q"
      },
      "source": [
        "# Project: Deep Learning - Calculations"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "_R3K9DR2Z0-r"
      },
      "source": [
        "**Instructions for Students:**\n",
        "\n",
        "Please carefully follow these steps to complete and submit your project:\n",
        "\n",
        "1. **Make a copy of the Project**: Please make a copy of this project either to your own Google Drive or download locally. Work on the copy of the project. The master project is **Read-Only**, meaning you can edit, but it will not be saved when you close the master project. To avoid total loss of your work, remember to make a copy.\n",
        "\n",
        "2. **Completing the Project**: You are required to work on and complete all tasks in the provided project. Be disciplined and ensure that you thoroughly engage with each task.\n",
        "   \n",
        "3. **Creating a Google Drive Folder**: Each of you must create a new folder on your Google Drive. This will be the repository for all your completed project files, aiding you in keeping your work organized and accessible.\n",
        "   \n",
        "4. **Uploading Completed Project**: Upon completion of your project, make sure to upload all necessary files, involving codes, reports, and related documents into the created Google Drive folder. Save this link in the 'Student Identity' section and also provide it as the last parameter in the `submit` function that has been provided.\n",
        "   \n",
        "5. **Sharing Folder Link**: You're required to share the link to your project Google Drive folder. This is crucial for the submission and evaluation of your project.\n",
        "   \n",
        "6. **Setting Permission to Public**: Please make sure your Google Drive folder is set to public. This allows your instructor to access your solutions and assess your work correctly.\n",
        "\n",
        "Adhering to these procedures will facilitate a smooth project evaluation process for you and the reviewers."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "XeK2fKDrZ0-s"
      },
      "source": [
        "## Project Description\n",
        "\n",
        "The Deep Learning Projects are divided into two parts, the first is the Calculations worth 30% in this notebook and the second one is Pytorch Project worth 70%.\n",
        "\n",
        "The two projects will help you gain experience to learn about Deep Learning in detail.\n",
        "\n",
        "Happy coding!"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Lgd8szRCZ0-t"
      },
      "source": [
        "## Grading Criteria\n",
        "\n",
        "There are 4 primary tasks in this project, all have the same weight. Each task will give you either 100 point if you are correct and 0 if you are wrong. The final score for the project will the the average of all 4 tasks.\n",
        "\n",
        "There is also an optional task (Task 5) that you can do to challenge your understanding.\n",
        "\n",
        "* Task 1: This task will assess your ability to do basic matrix multiplication which is an important part in machine and deep learning.\n",
        "\n",
        "* Task 2: This task will assess your ability to understand how a neural network work through weight and biases.\n",
        "\n",
        "* Task 3: The task will assess your ability to understand how a neural network layer works.\n",
        "\n",
        "* Task 4: This task will assess your ability to understand how backpropagation works in a neural network.\n",
        "\n",
        "* Task 5 (optional): This task will assess your ability to understand how to calculate cost and why it's important by using backpropagation in a neural network.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "W1dT1yHmZ0-t"
      },
      "source": [
        "## Student Identity"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "-Vysq0mbZ0-t"
      },
      "outputs": [],
      "source": [
        "# @title #### Student Identity\n",
        "student_id = \"\" # @param {type:\"string\"}\n",
        "name = \"\" # @param {type:\"string\"}\n",
        "drive_link = \"\"  # @param {type:\"string\"}"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "TuVolX9FZ0-u"
      },
      "source": [
        "## Import package"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Pl3QEX2HZ0-u"
      },
      "outputs": [],
      "source": [
        "!pip install fastbook\n",
        "\n",
        "!pip install rggrader\n",
        "from rggrader import submit"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "4gtGSA8SZ0-v"
      },
      "source": [
        "\n",
        "## Task 1\n",
        "\n",
        "Given\n",
        "\n",
        "$$\n",
        "X = \\begin{bmatrix}\n",
        "a \\\\\n",
        "b \\\\\n",
        "c \\\\\n",
        "d \\\\\n",
        "e\n",
        "\\end{bmatrix}\n",
        "$$\n",
        "\n",
        "and\n",
        "\n",
        "$$\n",
        "M =\n",
        "\\begin{bmatrix}\n",
        "-2 & 3 & 3 & 3 & -4 \\\\\n",
        "0 & -4 & -1 & 1 & 2 \\\\\n",
        "1 & 5 & 4 & 2 & 0 \\\\\n",
        "-2 & 5 & -5 & 3 & 1 \\\\\n",
        "-3 & 2 & 4 & 3 & 4 \\\\\n",
        "\\end{bmatrix}\n",
        "$$\n",
        "\n",
        "and\n",
        "\n",
        "$$\n",
        "M \\cdot X =\n",
        " =\n",
        "\\begin{bmatrix}\n",
        "-33 \\\\\n",
        "9 \\\\\n",
        "-34 \\\\\n",
        "-38 \\\\\n",
        " -40\n",
        "\\end{bmatrix}\n",
        "$$\n",
        "\n",
        "What is the value of $a + b + c + d + e$?"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "JCwFuKpEZ0-v"
      },
      "outputs": [],
      "source": [
        "# You may add any code here to derive your variables\n",
        "# Please change this\n",
        "a = 0\n",
        "b = 0\n",
        "c = 0\n",
        "d = 0\n",
        "e = 0\n",
        "total = a + b + c + d + e\n",
        "\n",
        "print(f\"The total is {total}\")\n",
        "\n",
        "assignment_id = \"09-deep-learning-project\"\n",
        "question_id = \"q1_linear_algebra\"\n",
        "submit(student_id, name, assignment_id, str(total), question_id, drive_link)\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "AnzwjHI5Z0-v"
      },
      "source": [
        "## Task 2\n",
        "\n",
        "What is the output of the following Neural Network?"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "5Dhvs1l-Z0-v",
        "outputId": "8fec2c6f-eb16-4791-bcee-d3414a8b7fab"
      },
      "outputs": [
        {
          "data": {
            "image/svg+xml": [
              "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n",
              "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
              " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
              "<!-- Generated by graphviz version 8.1.0 (20230707.0739)\n",
              " -->\n",
              "<!-- Title: G Pages: 1 -->\n",
              "<svg width=\"452pt\" height=\"132pt\"\n",
              " viewBox=\"0.00 0.00 451.92 132.40\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n",
              "<g id=\"graph0\" class=\"graph\" transform=\"scale(1 1) rotate(0) translate(4 128.4)\">\n",
              "<title>G</title>\n",
              "<polygon fill=\"white\" stroke=\"none\" points=\"-4,4 -4,-128.4 447.92,-128.4 447.92,4 -4,4\"/>\n",
              "<!-- z_1 -->\n",
              "<g id=\"node1\" class=\"node\">\n",
              "<title>z_1</title>\n",
              "<polygon fill=\"none\" stroke=\"black\" points=\"209.5,-121.4 123.25,-121.4 119.25,-117.4 119.25,-71 205.5,-71 209.5,-75 209.5,-121.4\"/>\n",
              "<polyline fill=\"none\" stroke=\"black\" points=\"205.5,-117.4 119.25,-117.4\"/>\n",
              "<polyline fill=\"none\" stroke=\"black\" points=\"205.5,-117.4 205.5,-71\"/>\n",
              "<polyline fill=\"none\" stroke=\"black\" points=\"205.5,-117.4 209.5,-121.4\"/>\n",
              "<text text-anchor=\"middle\" x=\"164.38\" y=\"-91.15\" font-family=\"Times,serif\" font-size=\"14.00\">b = &#45;2, ReLU</text>\n",
              "</g>\n",
              "<!-- z_3 -->\n",
              "<g id=\"node3\" class=\"node\">\n",
              "<title>z_3</title>\n",
              "<polygon fill=\"none\" stroke=\"black\" points=\"338,-87.4 256.25,-87.4 252.25,-83.4 252.25,-37 334,-37 338,-41 338,-87.4\"/>\n",
              "<polyline fill=\"none\" stroke=\"black\" points=\"334,-83.4 252.25,-83.4\"/>\n",
              "<polyline fill=\"none\" stroke=\"black\" points=\"334,-83.4 334,-37\"/>\n",
              "<polyline fill=\"none\" stroke=\"black\" points=\"334,-83.4 338,-87.4\"/>\n",
              "<text text-anchor=\"middle\" x=\"295.12\" y=\"-57.15\" font-family=\"Times,serif\" font-size=\"14.00\">b = 4, ReLU</text>\n",
              "</g>\n",
              "<!-- z_1&#45;&gt;z_3 -->\n",
              "<g id=\"edge5\" class=\"edge\">\n",
              "<title>z_1&#45;&gt;z_3</title>\n",
              "<path fill=\"none\" stroke=\"black\" d=\"M209.68,-84.5C219.94,-81.79 230.95,-78.88 241.52,-76.09\"/>\n",
              "<polygon fill=\"black\" stroke=\"black\" points=\"242.13,-79.29 250.91,-73.35 240.34,-72.52 242.13,-79.29\"/>\n",
              "<text text-anchor=\"middle\" x=\"230.88\" y=\"-82.4\" font-family=\"Times,serif\" font-size=\"14.00\">2</text>\n",
              "</g>\n",
              "<!-- z_2 -->\n",
              "<g id=\"node2\" class=\"node\">\n",
              "<title>z_2</title>\n",
              "<polygon fill=\"none\" stroke=\"black\" points=\"209.5,-53.4 123.25,-53.4 119.25,-49.4 119.25,-3 205.5,-3 209.5,-7 209.5,-53.4\"/>\n",
              "<polyline fill=\"none\" stroke=\"black\" points=\"205.5,-49.4 119.25,-49.4\"/>\n",
              "<polyline fill=\"none\" stroke=\"black\" points=\"205.5,-49.4 205.5,-3\"/>\n",
              "<polyline fill=\"none\" stroke=\"black\" points=\"205.5,-49.4 209.5,-53.4\"/>\n",
              "<text text-anchor=\"middle\" x=\"164.38\" y=\"-23.15\" font-family=\"Times,serif\" font-size=\"14.00\">b = &#45;6, ReLU</text>\n",
              "</g>\n",
              "<!-- z_2&#45;&gt;z_3 -->\n",
              "<g id=\"edge6\" class=\"edge\">\n",
              "<title>z_2&#45;&gt;z_3</title>\n",
              "<path fill=\"none\" stroke=\"black\" d=\"M209.68,-39.9C219.94,-42.61 230.95,-45.52 241.52,-48.31\"/>\n",
              "<polygon fill=\"black\" stroke=\"black\" points=\"240.34,-51.88 250.91,-51.05 242.13,-45.11 240.34,-51.88\"/>\n",
              "<text text-anchor=\"middle\" x=\"230.88\" y=\"-49.4\" font-family=\"Times,serif\" font-size=\"14.00\">3</text>\n",
              "</g>\n",
              "<!-- output -->\n",
              "<g id=\"node6\" class=\"node\">\n",
              "<title>output</title>\n",
              "<ellipse fill=\"none\" stroke=\"black\" cx=\"409.46\" cy=\"-62.2\" rx=\"34.46\" ry=\"18\"/>\n",
              "<text text-anchor=\"middle\" x=\"409.46\" y=\"-57.15\" font-family=\"Times,serif\" font-size=\"14.00\">output</text>\n",
              "</g>\n",
              "<!-- z_3&#45;&gt;output -->\n",
              "<g id=\"edge7\" class=\"edge\">\n",
              "<title>z_3&#45;&gt;output</title>\n",
              "<path fill=\"none\" stroke=\"black\" d=\"M338.27,-62.2C346.67,-62.2 355.52,-62.2 363.99,-62.2\"/>\n",
              "<polygon fill=\"black\" stroke=\"black\" points=\"363.85,-65.7 373.85,-62.2 363.85,-58.7 363.85,-65.7\"/>\n",
              "</g>\n",
              "<!-- input_1 -->\n",
              "<g id=\"node4\" class=\"node\">\n",
              "<title>input_1</title>\n",
              "<ellipse fill=\"none\" stroke=\"black\" cx=\"36\" cy=\"-99.2\" rx=\"36\" ry=\"25.2\"/>\n",
              "<text text-anchor=\"middle\" x=\"36\" y=\"-94.15\" font-family=\"Times,serif\" font-size=\"14.00\">4</text>\n",
              "</g>\n",
              "<!-- input_1&#45;&gt;z_1 -->\n",
              "<g id=\"edge1\" class=\"edge\">\n",
              "<title>input_1&#45;&gt;z_1</title>\n",
              "<path fill=\"none\" stroke=\"black\" d=\"M72.35,-99.96C78.24,-100.06 84.29,-100.15 90,-100.2 95,-100.25 96.25,-100.36 101.25,-100.2 103.49,-100.13 105.77,-100.04 108.07,-99.94\"/>\n",
              "<polygon fill=\"black\" stroke=\"black\" points=\"108.12,-103.4 117.94,-99.41 107.78,-96.4 108.12,-103.4\"/>\n",
              "<text text-anchor=\"middle\" x=\"95.62\" y=\"-103.4\" font-family=\"Times,serif\" font-size=\"14.00\">4</text>\n",
              "</g>\n",
              "<!-- input_1&#45;&gt;z_2 -->\n",
              "<g id=\"edge3\" class=\"edge\">\n",
              "<title>input_1&#45;&gt;z_2</title>\n",
              "<path fill=\"none\" stroke=\"black\" d=\"M64.73,-83.62C77.85,-76.25 93.98,-67.19 109.37,-58.54\"/>\n",
              "<polygon fill=\"black\" stroke=\"black\" points=\"110.82,-61.18 117.82,-53.23 107.39,-55.08 110.82,-61.18\"/>\n",
              "<text text-anchor=\"middle\" x=\"95.62\" y=\"-70.4\" font-family=\"Times,serif\" font-size=\"14.00\">0</text>\n",
              "</g>\n",
              "<!-- input_2 -->\n",
              "<g id=\"node5\" class=\"node\">\n",
              "<title>input_2</title>\n",
              "<ellipse fill=\"none\" stroke=\"black\" cx=\"36\" cy=\"-25.2\" rx=\"36\" ry=\"25.2\"/>\n",
              "<text text-anchor=\"middle\" x=\"36\" y=\"-20.15\" font-family=\"Times,serif\" font-size=\"14.00\">&#45;3</text>\n",
              "</g>\n",
              "<!-- input_2&#45;&gt;z_1 -->\n",
              "<g id=\"edge2\" class=\"edge\">\n",
              "<title>input_2&#45;&gt;z_1</title>\n",
              "<path fill=\"none\" stroke=\"black\" d=\"M71.04,-31.49C81.21,-34.28 92.09,-38.21 101.25,-43.7 111.09,-49.6 110.68,-54.57 119.25,-62.2 119.85,-62.73 120.45,-63.26 121.06,-63.79\"/>\n",
              "<polygon fill=\"black\" stroke=\"black\" points=\"118.35,-66.93 128.25,-70.69 122.85,-61.57 118.35,-66.93\"/>\n",
              "<text text-anchor=\"middle\" x=\"95.62\" y=\"-46.4\" font-family=\"Times,serif\" font-size=\"14.00\">2</text>\n",
              "</g>\n",
              "<!-- input_2&#45;&gt;z_2 -->\n",
              "<g id=\"edge4\" class=\"edge\">\n",
              "<title>input_2&#45;&gt;z_2</title>\n",
              "<path fill=\"none\" stroke=\"black\" d=\"M66.37,-10.95C73.9,-7.96 82.11,-5.24 90,-3.7 95.93,-2.54 102.05,-2.55 108.09,-3.35\"/>\n",
              "<polygon fill=\"black\" stroke=\"black\" points=\"107.36,-6.97 117.86,-5.55 108.76,-0.12 107.36,-6.97\"/>\n",
              "<text text-anchor=\"middle\" x=\"95.62\" y=\"-6.4\" font-family=\"Times,serif\" font-size=\"14.00\">&#45;1</text>\n",
              "</g>\n",
              "</g>\n",
              "</svg>\n"
            ],
            "text/plain": [
              "<graphviz.sources.Source at 0x28f274710>"
            ]
          },
          "execution_count": 22,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "from fastbook import *\n",
        "\n",
        "\n",
        "# Draw neurons with multiple inputs and weights\n",
        "gv('''\n",
        "z_1[shape=box3d width=1 height=0.7 label=\"b = -2, ReLU\"];\n",
        "z_2[shape=box3d width=1 height=0.7 label=\"b = -6, ReLU\"];\n",
        "z_3[shape=box3d width=1 height=0.7 label=\"b = 4, ReLU\"];\n",
        "input_1[width=1 height=0.7 label=\"4\"];\n",
        "input_2[width=1 height=0.7 label=\"-3\"];\n",
        "input_1 -> z_1 [label=\"4\"]\n",
        "input_2 -> z_1 [label=\"2\"]\n",
        "input_1 -> z_2 [label=\"0\"]\n",
        "input_2 -> z_2 [label=\"-1\"]\n",
        "\n",
        "z_1 -> z_3 [label=\"2\"]\n",
        "z_2 -> z_3 [label=\"3\"]\n",
        "z_3 ->output\n",
        "\n",
        "\n",
        "''')\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "jtzFBQeIZ0-w"
      },
      "outputs": [],
      "source": [
        "# You may add any code here to derive your variables\n",
        "# Please change this\n",
        "output = 0\n",
        "\n",
        "print(f\"The output is {output}\")\n",
        "\n",
        "assignment_id = \"09-deep-learning-project\"\n",
        "question_id = \"q2_simple_neural_network\"\n",
        "submit(student_id, name, assignment_id, str(output), question_id, drive_link)\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "nw5Rc4_QZ0-w"
      },
      "source": [
        "## Task 3\n",
        "\n",
        "Given the following Neural Networks:\n",
        "\n",
        "First layer:\n",
        "\n",
        "$$\n",
        "W = \\begin{bmatrix}\n",
        "0.23 & 0.67 & 0.12 \\\\\n",
        "-0.89 & -0.45 & 0.78 \\\\\n",
        "0.34 & 0.56 & -0.90 \\\\\n",
        "-0.12 & 0.34 & 0.56 \\\\\n",
        "0.78 & -0.90 & 0.23 \\\\\n",
        "\\end{bmatrix}\n",
        "$$\n",
        "\n",
        "$$\n",
        "bias = \\begin{bmatrix}\n",
        "0.23 \\\\\n",
        "-0.89 \\\\\n",
        "0.34 \\\\\n",
        "0.12 \\\\\n",
        "-0.78 \\\\\n",
        "\\end{bmatrix}\n",
        "$$\n",
        "\n",
        "Second layer:\n",
        "\n",
        "$$\n",
        "W = \\begin{bmatrix}\n",
        "0.23 & 0.67 & 0.12 & 0.45 & 0.89 \\\\\n",
        "0.12 & 0.34 & 0.56 & 0.78 & 0.90 \\\\\n",
        "\\end{bmatrix}\n",
        "$$\n",
        "\n",
        "$$\n",
        "bias = \\begin{bmatrix}\n",
        "1.96 \\\\\n",
        "-1.08 \\\\\n",
        "\\end{bmatrix}\n",
        "$$\n",
        "\n",
        "Third layer:\n",
        "$$\n",
        "W = \\begin{bmatrix}\n",
        "1.08 & -0.16\n",
        "\\end{bmatrix}\n",
        "$$\n",
        "\n",
        "$$\n",
        "bias = \\begin{bmatrix}\n",
        "-2.8\n",
        "\\end{bmatrix}\n",
        "$$\n",
        "\n",
        "All layers use the ReLU activation function.\n",
        "\n",
        "What is the output given the following inputs?\n",
        "\n",
        "$$\n",
        "X = \\begin{bmatrix}\n",
        "1 \\\\\n",
        "2 \\\\\n",
        "4 \\\\\n",
        "\\end{bmatrix}\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "4d8Oibi1Z0-x"
      },
      "outputs": [],
      "source": [
        "# You may add any code here to derive your variables\n",
        "\n",
        "# Please change this\n",
        "output = 0\n",
        "\n",
        "print(f\"The output is {output}\")\n",
        "\n",
        "assignment_id = \"09-deep-learning-project\"\n",
        "question_id = \"q3_complex_neural_network\"\n",
        "submit(student_id, name, assignment_id, str(output), question_id, drive_link)\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Vn5o5XmfZ0-x"
      },
      "source": [
        "## Task 4\n",
        "\n",
        "Given [the following sheet (sheet name = Project A)](https://docs.google.com/spreadsheets/d/15JWbRFB4k5CNcfD-2hduHHssXIc1SGhNVSpu_30wVAw/edit#gid=180755192)\n",
        "\n",
        "Make a backpropagation algorithm to train the network. You can refer to AND and NOT sheet. Use sigmoid activation function for all\n",
        "\n",
        "Hint: it needs 1 layer with 1 neuron\n",
        "\n",
        "What is the cost at 10th iteration (the iteration start from 1)?"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "d2aSUbaaZ0-x"
      },
      "outputs": [],
      "source": [
        "# Please clone the Google Sheet and do your calculation there\n",
        "\n",
        "# Please change this\n",
        "cost = 0\n",
        "\n",
        "# Don't forget to fill in the link to your Google Sheet\n",
        "link_to_gsheet = \"\"\n",
        "\n",
        "print(f\"The cost is {cost}\")\n",
        "\n",
        "assignment_id = \"09-deep-learning-project\"\n",
        "\n",
        "question_id = \"q4_cost_function_cost\"\n",
        "submit(student_id, name, assignment_id, str(cost), question_id)\n",
        "\n",
        "question_id = \"q4_cost_function_gsheet\"\n",
        "submit(student_id, name, assignment_id, str(link_to_gsheet), question_id, drive_link)\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Kh7uzjtDZ0-x"
      },
      "source": [
        "## Task 5 (Bonus - Optional)\n",
        "\n",
        "_This task is optional, it will earn you a distinction, but will not give you additional points._\n",
        "\n",
        "Given [the following sheet (sheet name = Project B)](https://docs.google.com/spreadsheets/d/15JWbRFB4k5CNcfD-2hduHHssXIc1SGhNVSpu_30wVAw/edit#gid=1029811725)\n",
        "\n",
        "Make a backpropagation algorithm to train the network. You can refer to AND and NOT sheet. Use sigmoid activation function for all\n",
        "\n",
        "Hint: it needs 2 layer (1 hidden layer + 1 output layer). The hidden layer has 2 neurons\n",
        "\n",
        "What is the cost at 10th iteration (the iteration start from 1)?"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "KJJOi3V1Z0-x"
      },
      "outputs": [],
      "source": [
        "# Please clone the Google Sheet and do your calculation there\n",
        "\n",
        "# Please change this\n",
        "cost = 0\n",
        "\n",
        "# Don't forget to fill in the link to your Google Sheet\n",
        "link_to_gsheet = \"\"\n",
        "\n",
        "print(f\"The cost is {cost}\")\n",
        "\n",
        "assignment_id = \"09-deep-learning-project\"\n",
        "\n",
        "question_id = \"q5_cost_function_cost\"\n",
        "submit(student_id, name, assignment_id, str(cost), question_id)\n",
        "\n",
        "question_id = \"q5_cost_function_gsheet\"\n",
        "submit(student_id, name, assignment_id, str(link_to_gsheet), question_id, drive_link)\n"
      ]
    }
  ],
  "metadata": {
    "kernelspec": {
      "display_name": "Python 3 (ipykernel)",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.11.3"
    },
    "colab": {
      "provenance": []
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}