import gradio as gr from PIL import Image import os import numpy as np import tensorflow as tf import requests from skimage.color import lab2rgb from models.autoencoder_gray2color import SpatialAttention from models.unet_gray2color import SelfAttentionLayer WIDTH, HEIGHT = 512, 512 # Define model paths load_model_paths = [ "./ckpts/autoencoder/autoencoder_colorization_model.h5", "./ckpts/unet/unet_colorization_model.keras", "./ckpts/transformer/transformer_colorization_model.keras" ] # Load models at startup models = {} print("Loading models...") for path in load_model_paths: model_name = os.path.basename(os.path.dirname(path)) if not os.path.exists(path): os.makedirs(os.path.dirname(path), exist_ok=True) url_map = { "autoencoder": "https://huggingface.co/danhtran2mind/autoencoder-grayscale2color-landscape/resolve/main/ckpts/best_model.h5", "unet": "https://example.com/unet_colorization_model.keras", # Replace with actual URL "transformer": "https://example.com/transformer_colorization_model.keras" # Replace with actual URL } if model_name in url_map: print(f"Downloading {model_name} model from {url_map[model_name]}...") with requests.get(url_map[model_name], stream=True) as r: r.raise_for_status() with open(path, "wb") as f: for chunk in r.iter_content(chunk_size=8192): f.write(chunk) print(f"Download complete for {model_name}.") custom_objects = { "autoencoder": {'SpatialAttention': SpatialAttention}, "unet": {'SelfAttentionLayer': SelfAttentionLayer}, "transformer": None } print(f"Loading {model_name} model from {path}...") models[model_name] = tf.keras.models.load_model( path, custom_objects=custom_objects[model_name] ) print("All models loaded.") def process_image(input_img, model_name): # Store original input dimensions original_width, original_height = input_img.size # Convert PIL Image to grayscale and resize to model input size img = input_img.convert("L") # Convert to grayscale (single channel) img = img.resize((WIDTH, HEIGHT)) # Resize to 512x512 for model img_array = tf.keras.preprocessing.image.img_to_array(img) / 255.0 # Normalize to [0, 1] img_array = img_array[None, ..., 0:1] # Add batch dimension, shape: (1, 512, 512, 1) # Select model selected_model = models[model_name.lower()] # Run inference output_array = selected_model.predict(img_array) # Shape: (1, 512, 512, 2) for a*b* # Extract L* (grayscale input) and a*b* (model output) L_channel = img_array[0, :, :, 0] * 100.0 # Denormalize L* to [0, 100] ab_channels = output_array[0] * 128.0 # Denormalize a*b* to [-128, 128] # Combine L*, a*, b* into a 3-channel L*a*b* image lab_image = np.stack([L_channel, ab_channels[:, :, 0], ab_channels[:, :, 1]], axis=-1) # Shape: (512, 512, 3) # Convert L*a*b* to RGB rgb_array = lab2rgb(lab_image) # Convert to RGB, output in [0, 1] rgb_array = np.clip(rgb_array, 0, 1) * 255.0 # Scale to [0, 255] rgb_image = Image.fromarray(rgb_array.astype(np.uint8), mode="RGB") # Create RGB PIL image # Resize output image to match input image resolution rgb_image = rgb_image.resize((original_width, original_height), Image.Resampling.LANCZOS) return rgb_image custom_css = """ body {background: linear-gradient(135deg, #f0f4f8 0%, #d9e2ec 100%) !important;} .gradio-container {background: transparent !important;} h1, .gr-title {color: #007bff !important; font-family: 'Segoe UI', sans-serif;} .gr-description {color: #333333 !important; font-size: 1.1em;} .gr-input, .gr-output {border-radius: 18px !important; box-shadow: 0 4px 24px rgba(0,0,0,0.1);} .gr-button {background: linear-gradient(90deg, #007bff 0%, #00c4cc 100%) !important; color: #fff !important; border: none !important; border-radius: 12px !important;} """ demo = gr.Interface( fn=process_image, inputs=[ gr.Image(type="pil", label="Upload Grayscale Landscape", image_mode="L"), gr.Dropdown( choices=["Autoencoder", "Unet", "Transformer"], label="Select Model", value="Autoencoder" ) ], outputs=gr.Image(type="pil", label="Colorized Output"), title="🌄 Gray2Color Landscape Colorization", description=( "