File size: 4,893 Bytes
c8f6bca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import gradio as gr
from PIL import Image
import os
import numpy as np
import tensorflow as tf
import requests
from skimage.color import lab2rgb
# Model paths and mapping
load_model_paths = [
"ckpts/autoencoder/autoencoder_colorization_model.h5",
"ckpts/unet/unet_colorization_model.keras",
"ckpts/unet/unet_colorization_model.keras"
]
# Custom object needed by models
from models.auto_encoder_gray2color import SpatialAttention
# Model input size
WIDTH, HEIGHT = 512, 512
# Download models if they don't exist
def download_model(url, path):
os.makedirs(os.path.dirname(path), exist_ok=True)
print(f"Downloading model from {url}...")
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(path, "wb") as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
print("Download complete.")
# Helper to dynamically load a model
def load_model(model_path):
if not os.path.exists(model_path):
if "autoencoder" in model_path:
url = "https://huggingface.co/danhtran2mind/autoencoder-grayscale2color-landscape/resolve/main/ckpts/autoencoder_colorization_model.h5"
elif "unet" in model_path:
url = "https://huggingface.co/danhtran2mind/autoencoder-grayscale2color-landscape/resolve/main/ckpts/unet_colorization_model.keras"
else:
raise ValueError("Unknown model path for downloading.")
download_model(url, model_path)
print(f"Loading model from {model_path}...")
return tf.keras.models.load_model(
model_path,
custom_objects={'SpatialAttention': SpatialAttention}
)
# Dictionary of loaded models
loaded_models = {
"Autoencoder": load_model(load_model_paths[0]),
"U-Net v1": load_model(load_model_paths[1]),
"U-Net v2": load_model(load_model_paths[2])
}
def process_image(input_img, model_type):
model = loaded_models[model_type]
# Store original input dimensions
original_width, original_height = input_img.size
# Convert PIL Image to grayscale and resize to model input size
img = input_img.convert("L") # Grayscale
img = img.resize((WIDTH, HEIGHT)) # Resize to match model input
img_array = tf.keras.preprocessing.image.img_to_array(img) / 255.0 # Normalize
img_array = img_array[None, ..., 0:1] # Add batch dim (B, H, W, C)
# Predict a*b* channels
output_array = model.predict(img_array)
print("Model Output Shape:", output_array.shape)
L_channel = img_array[0, :, :, 0] * 100.0
ab_channels = output_array[0] * 128.0 # Denormalize ab to [-128, 128]
# Combine into Lab image
lab_image = np.stack([L_channel, ab_channels[:, :, 0], ab_channels[:, :, 1]], axis=-1)
# Convert to RGB
rgb_array = lab2rgb(lab_image)
rgb_array = np.clip(rgb_array, 0, 1) * 255.0
rgb_image = Image.fromarray(rgb_array.astype(np.uint8), 'RGB')
# Resize back to original resolution
rgb_image = rgb_image.resize((original_width, original_height), Image.Resampling.LANCZOS)
return rgb_image
custom_css = """
body {background: linear-gradient(135deg, #f0f4f8 0%, #d9e2ec 100%) !important;}
.gradio-container {background: transparent !important;}
h1, .gr-title {color: #007bff !important; font-family: 'Segoe UI', sans-serif;}
.gr-description {color: #333333 !important; font-size: 1.1em;}
.gr-input, .gr-output {border-radius: 18px !important; box-shadow: 0 4px 24px rgba(0,0,0,0.1);}
.gr-button {background: linear-gradient(90deg, #007bff 0%, #00c4cc 100%) !important; color: #fff !important; border: none !important; border-radius: 12px !important;}
"""
with gr.Blocks(theme="soft", css=custom_css) as demo:
gr.Markdown("<h1 style='text-align:center;'>๐ Gray2Color Landscape Autoencoder</h1>")
gr.Markdown(
"<div style='font-size:1.15em;line-height:1.6em;text-align:center;'>"
"Transform grayscale landscape photos into vivid color using AI.<br>"
"Upload a grayscale image and select a model to begin!"
"</div>"
)
with gr.Row():
image_input = gr.Image(type="pil", label="Upload Grayscale Landscape", image_mode="L")
image_output = gr.Image(type="pil", label="Colorized Output")
model_selector = gr.Dropdown(
choices=["Autoencoder", "U-Net v1", "U-Net v2"],
label="Select Model",
value="Autoencoder"
)
run_button = gr.Button("๐จ Colorize")
run_button.click(fn=process_image, inputs=[image_input, model_selector], outputs=image_output)
gr.Examples(
examples=[
["examples/example_input_1.jpg"],
["examples/example_input_2.jpg"]
],
inputs=[image_input],
outputs=image_output,
fn=lambda x: process_image(x, "Autoencoder"), # Default example model choice
cache_examples=True
)
if __name__ == "__main__":
demo.launch()
|