import importlib from time import sleep from typing import List from onnxruntime import InferenceSession from facefusion import process_manager, state_manager from facefusion.app_context import detect_app_context from facefusion.execution import create_inference_session_providers from facefusion.filesystem import is_file from facefusion.types import DownloadSet, ExecutionProvider, InferencePool, InferencePoolSet INFERENCE_POOL_SET : InferencePoolSet =\ { 'cli': {}, 'ui': {} } def get_inference_pool(module_name : str, model_names : List[str], model_source_set : DownloadSet) -> InferencePool: while process_manager.is_checking(): sleep(0.5) execution_device_id = state_manager.get_item('execution_device_id') execution_providers = resolve_execution_providers(module_name) app_context = detect_app_context() inference_context = get_inference_context(module_name, model_names, execution_device_id, execution_providers) if app_context == 'cli' and INFERENCE_POOL_SET.get('ui').get(inference_context): INFERENCE_POOL_SET['cli'][inference_context] = INFERENCE_POOL_SET.get('ui').get(inference_context) if app_context == 'ui' and INFERENCE_POOL_SET.get('cli').get(inference_context): INFERENCE_POOL_SET['ui'][inference_context] = INFERENCE_POOL_SET.get('cli').get(inference_context) if not INFERENCE_POOL_SET.get(app_context).get(inference_context): INFERENCE_POOL_SET[app_context][inference_context] = create_inference_pool(model_source_set, execution_device_id, execution_providers) return INFERENCE_POOL_SET.get(app_context).get(inference_context) def create_inference_pool(model_source_set : DownloadSet, execution_device_id : str, execution_providers : List[ExecutionProvider]) -> InferencePool: inference_pool : InferencePool = {} for model_name in model_source_set.keys(): model_path = model_source_set.get(model_name).get('path') if is_file(model_path): inference_pool[model_name] = create_inference_session(model_path, execution_device_id, execution_providers) return inference_pool def clear_inference_pool(module_name : str, model_names : List[str]) -> None: execution_device_id = state_manager.get_item('execution_device_id') execution_providers = resolve_execution_providers(module_name) app_context = detect_app_context() inference_context = get_inference_context(module_name, model_names, execution_device_id, execution_providers) if INFERENCE_POOL_SET.get(app_context).get(inference_context): del INFERENCE_POOL_SET[app_context][inference_context] def create_inference_session(model_path : str, execution_device_id : str, execution_providers : List[ExecutionProvider]) -> InferenceSession: inference_session_providers = create_inference_session_providers(execution_device_id, execution_providers) return InferenceSession(model_path, providers = inference_session_providers) def get_inference_context(module_name : str, model_names : List[str], execution_device_id : str, execution_providers : List[ExecutionProvider]) -> str: inference_context = '.'.join([ module_name ] + model_names + [ execution_device_id ] + list(execution_providers)) return inference_context def resolve_execution_providers(module_name : str) -> List[ExecutionProvider]: module = importlib.import_module(module_name) if hasattr(module, 'resolve_execution_providers'): return getattr(module, 'resolve_execution_providers')() return state_manager.get_item('execution_providers')