Spaces:
Running
Running
from functools import lru_cache | |
from typing import Tuple | |
import numpy | |
import scipy | |
from facefusion import inference_manager | |
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url | |
from facefusion.filesystem import resolve_relative_path | |
from facefusion.thread_helper import thread_semaphore | |
from facefusion.types import Audio, AudioChunk, DownloadScope, InferencePool, ModelOptions, ModelSet | |
def create_static_model_set(download_scope : DownloadScope) -> ModelSet: | |
return\ | |
{ | |
'kim_vocal_2': | |
{ | |
'hashes': | |
{ | |
'voice_extractor': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'kim_vocal_2.hash'), | |
'path': resolve_relative_path('../.assets/models/kim_vocal_2.hash') | |
} | |
}, | |
'sources': | |
{ | |
'voice_extractor': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'kim_vocal_2.onnx'), | |
'path': resolve_relative_path('../.assets/models/kim_vocal_2.onnx') | |
} | |
} | |
} | |
} | |
def get_inference_pool() -> InferencePool: | |
model_names = [ 'kim_vocal_2' ] | |
model_source_set = get_model_options().get('sources') | |
return inference_manager.get_inference_pool(__name__, model_names, model_source_set) | |
def clear_inference_pool() -> None: | |
model_names = [ 'kim_vocal_2' ] | |
inference_manager.clear_inference_pool(__name__, model_names) | |
def get_model_options() -> ModelOptions: | |
return create_static_model_set('full').get('kim_vocal_2') | |
def pre_check() -> bool: | |
model_hash_set = get_model_options().get('hashes') | |
model_source_set = get_model_options().get('sources') | |
return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set) | |
def batch_extract_voice(audio : Audio, chunk_size : int, step_size : int) -> Audio: | |
temp_audio = numpy.zeros((audio.shape[0], 2)).astype(numpy.float32) | |
temp_chunk = numpy.zeros((audio.shape[0], 2)).astype(numpy.float32) | |
for start in range(0, audio.shape[0], step_size): | |
end = min(start + chunk_size, audio.shape[0]) | |
temp_audio[start:end, ...] += extract_voice(audio[start:end, ...]) | |
temp_chunk[start:end, ...] += 1 | |
audio = temp_audio / temp_chunk | |
return audio | |
def extract_voice(temp_audio_chunk : AudioChunk) -> AudioChunk: | |
voice_extractor = get_inference_pool().get('voice_extractor') | |
chunk_size = (voice_extractor.get_inputs()[0].shape[3] - 1) * 1024 | |
trim_size = 3840 | |
temp_audio_chunk, pad_size = prepare_audio_chunk(temp_audio_chunk.T, chunk_size, trim_size) | |
temp_audio_chunk = decompose_audio_chunk(temp_audio_chunk, trim_size) | |
temp_audio_chunk = forward(temp_audio_chunk) | |
temp_audio_chunk = compose_audio_chunk(temp_audio_chunk, trim_size) | |
temp_audio_chunk = normalize_audio_chunk(temp_audio_chunk, chunk_size, trim_size, pad_size) | |
return temp_audio_chunk | |
def forward(temp_audio_chunk : AudioChunk) -> AudioChunk: | |
voice_extractor = get_inference_pool().get('voice_extractor') | |
with thread_semaphore(): | |
temp_audio_chunk = voice_extractor.run(None, | |
{ | |
'input': temp_audio_chunk | |
})[0] | |
return temp_audio_chunk | |
def prepare_audio_chunk(temp_audio_chunk : AudioChunk, chunk_size : int, trim_size : int) -> Tuple[AudioChunk, int]: | |
step_size = chunk_size - 2 * trim_size | |
pad_size = step_size - temp_audio_chunk.shape[1] % step_size | |
audio_chunk_size = temp_audio_chunk.shape[1] + pad_size | |
temp_audio_chunk = temp_audio_chunk.astype(numpy.float32) / numpy.iinfo(numpy.int16).max | |
temp_audio_chunk = numpy.pad(temp_audio_chunk, ((0, 0), (trim_size, trim_size + pad_size))) | |
temp_audio_chunks = [] | |
for index in range(0, audio_chunk_size, step_size): | |
temp_audio_chunks.append(temp_audio_chunk[:, index:index + chunk_size]) | |
temp_audio_chunk = numpy.concatenate(temp_audio_chunks, axis = 0) | |
temp_audio_chunk = temp_audio_chunk.reshape((-1, chunk_size)) | |
return temp_audio_chunk, pad_size | |
def decompose_audio_chunk(temp_audio_chunk : AudioChunk, trim_size : int) -> AudioChunk: | |
frame_size = 7680 | |
frame_overlap = 6656 | |
frame_total = 3072 | |
bin_total = 256 | |
channel_total = 4 | |
window = scipy.signal.windows.hann(frame_size) | |
temp_audio_chunk = scipy.signal.stft(temp_audio_chunk, nperseg = frame_size, noverlap = frame_overlap, window = window)[2] | |
temp_audio_chunk = numpy.stack((numpy.real(temp_audio_chunk), numpy.imag(temp_audio_chunk)), axis = -1).transpose((0, 3, 1, 2)) | |
temp_audio_chunk = temp_audio_chunk.reshape(-1, 2, 2, trim_size + 1, bin_total).reshape(-1, channel_total, trim_size + 1, bin_total) | |
temp_audio_chunk = temp_audio_chunk[:, :, :frame_total] | |
temp_audio_chunk /= numpy.sqrt(1.0 / window.sum() ** 2) | |
return temp_audio_chunk | |
def compose_audio_chunk(temp_audio_chunk : AudioChunk, trim_size : int) -> AudioChunk: | |
frame_size = 7680 | |
frame_overlap = 6656 | |
frame_total = 3072 | |
bin_total = 256 | |
window = scipy.signal.windows.hann(frame_size) | |
temp_audio_chunk = numpy.pad(temp_audio_chunk, ((0, 0), (0, 0), (0, trim_size + 1 - frame_total), (0, 0))) | |
temp_audio_chunk = temp_audio_chunk.reshape(-1, 2, trim_size + 1, bin_total).transpose((0, 2, 3, 1)) | |
temp_audio_chunk = temp_audio_chunk[:, :, :, 0] + 1j * temp_audio_chunk[:, :, :, 1] | |
temp_audio_chunk = scipy.signal.istft(temp_audio_chunk, nperseg = frame_size, noverlap = frame_overlap, window = window)[1] | |
temp_audio_chunk *= numpy.sqrt(1.0 / window.sum() ** 2) | |
return temp_audio_chunk | |
def normalize_audio_chunk(temp_audio_chunk : AudioChunk, chunk_size : int, trim_size : int, pad_size : int) -> AudioChunk: | |
temp_audio_chunk = temp_audio_chunk.reshape((-1, 2, chunk_size)) | |
temp_audio_chunk = temp_audio_chunk[:, :, trim_size:-trim_size].transpose(1, 0, 2) | |
temp_audio_chunk = temp_audio_chunk.reshape(2, -1)[:, :-pad_size].T | |
return temp_audio_chunk | |